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In binocular vision, occlusion of one object by another
gives rise to monocular occlusions—regions visible only
in one eye. Although binocular disparities cannot be
computed for these regions, monocular occlusions can
be precisely localized in depth and can induce the
perception of illusory occluding surfaces. The
phenomenon of depth perception from monocular
occlusions, known as da Vinci stereopsis, is intriguing,
but its mechanisms are not well understood. We first
propose a theory of the mechanisms underlying da Vinci
stereopsis that is based on the psychophysical and
computational literature on monocular occlusions. It
postulates, among other principles, that monocular
areas are detected explicitly, and depth from occlusions
is calculated based on constraints imposed by occlusion
geometry. Next, we describe a biologically inspired
computational model based on this theory that
successfully reconstructs depth in a large range of stimuli
and produces results similar to those described in the
psychophysical literature. These results demonstrate that
the proposed neural architecture could underpin da Vinci
stereopsis and other stereoscopic percepts.

Introduction

When the world is viewed binocularly, the retinal
images are not identical; the difference in the vantage
points of the two eyes creates a disparity in the position
of the imaged objects. If corresponding image points on
the two retinae can be found, this positional disparity
can be extracted, and the relative depth of objects can
be determined using simple geometry. The difference in
the vantage points of the two eyes also creates
monocular areas visible to one eye only, as shown in

Figure 1A. These areas arise due to physical occlusion
of objects by other objects and thus are referred to as
‘‘monocular occlusions’’ (or ‘‘binocular half-occlu-
sions’’). Importantly, monocularly occluded areas do
not have a match in the image of the other eye.

In the last two decades, it has been shown that depth
can be perceived solely on the basis of monocular
occlusions (Cook & Gillam, 2004; Gillam & Nakaya-
ma, 1999; Nakayama & Shimojo, 1990; Tsirlin, Wilcox,
& Allison, 2010, 2012). For example, the presence of
monocular occlusions in certain configurations can
induce percepts of illusory occluding surfaces (Cook &
Gillam, 2004; Gillam & Grove, 2004; Gillam &
Nakayama, 1999). This startling phenomenon is
demonstrated in Figure 2B and 2C. Depth without
conventional disparity can also be perceived between
two objects, one of which is monocular (see Figure 2A)
and in other configurations with monocular features
(Forte, Peirce, & Lennie, 2002; Pianta & Gillam, 2003;
Sachtler & Gillam, 2007) (see Figure 2D). Occlusion-
based depth phenomena were named ‘‘da Vinci
stereopsis’’ by Nakayama and Shimojo (1990) in a nod
to Leonardo da Vinci’s early reflections on monocular
occlusions (da Vinci, 1877) and to distinguish them
from conventional stereopsis.

One important question that arises from the above
discussion is how depth is computed in the absence of
conventional positional disparity. It has been proposed
that the visual system relies on occlusion geometry to
estimate depth in these cases (Gillam & Nakayama,
1999; Nakayama & Shimojo, 1990). As shown in
Figure 1, the line of sight from the eye that cannot see
the monocular region constrains the minimum possible
depth between the monocular region, or the illusory
occluder, and the binocular regions. This minimum

Citation: Tsirlin, I., Wilcox, L. M., & Allison, R. S. (2014). A computational theory of da Vinci steropsis. Journal of Vision, 14(7):5,
1–26, http://www.journalofvision.org/content/14/7/5, doi:10.1167/14.7.5.

Journal of Vision (2014) 14(7):5, 1–26 1http://www.journalofvision.org/content/14/7/5

doi: 10 .1167 /14 .7 .5 ISSN 1534-7362 � 2014 ARVOReceived November 15, 2013; published June 9, 2014

Downloaded from jov.arvojournals.org on 01/14/2021

http://www.wilcoxlab.yorku.ca/~inna
http://www.wilcoxlab.yorku.ca/~inna
mailto:inna.tsirlin@sickkids.ca
mailto:inna.tsirlin@sickkids.ca
http://www.wilcoxlab.yorku.ca
http://www.wilcoxlab.yorku.ca
mailto:lwilcox@yorku.ca
mailto:lwilcox@yorku.ca
http://www.cse.yorku.ca/~allison/
http://www.cse.yorku.ca/~allison/
mailto:allison@cse.yorku.ca
mailto:allison@cse.yorku.ca


possible depth is linearly related to the width of the
monocular region (or the distance between the outer
edges of the monocular object and the occluder) such
that an increase in monocular occlusion width results in
an increase in the minimum possible depth. Note that
the maximum possible depth of the monocular region
(or illusory occluder) is not constrained. Theoretically,
the visual system could use the minimum depth
constraint, computing it from the occlusion width, to
position monocular regions and illusory occluders in
depth. In this case, an assumption is made that the

minimum possible depth is the best estimate of the
depth of the monocular region (or the illusory
occluder). In support of this hypothesis, it was found
that increasing the width of occluded regions, thus
increasing the minimum possible depth, results in an
increase in the perceived depth between the occluded
and the occluding surfaces both in illusory occluder
stimuli (Gillam & Nakayama, 1999; Tsirlin et al., 2010;
Tsirlin, Wilcox, & Allison, 2011) and in two-object
arrangements (Hakkinen & Nyman, 1997; Nakayama
& Shimojo, 1990; Tsirlin, Wilcox, et al., 2012).

Figure 1. Monocular occlusion geometry. (A) A foreground surface occludes regions of the background in each eye. The images

enclosed within the dashed triangles show what each eye is seeing. (B) In this two-object arrangement (Nakayama & Shimojo, 1990),

a larger surface (rectangle) occludes a stand-alone smaller object (bar). The line of sight from the left eye (bold black line) that does

not see the bar constrains the minimum possible depth of the occluded object. It cannot be located closer to the occluder (red

dashed outline) because it would be seen by the left eye. It could be positioned further without violating viewing geometry (black

dashed outline). Larger separations between the object and the occluder yield larger minimum possible depths between the two

objects as shown in (B) (compare left-hand and right-hand schematics). (C) Similar geometric rules apply to illusory occluder stimuli,

for example, that of Gillam and Nakayama (1999). The minimum possible depth of the illusory occluder on each side is constrained by

the lines of sight from the eyes that do not see the occluded region. Larger occluded regions yield larger minimum possible depth

between the occluded region and the illusory occluder.
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It is also important to understand the mechanisms
that could underlie da Vinci stereopsis. One possibility
is that depth from occlusions is a byproduct of the
activity of disparity detectors involved in stereopsis.
However, computational analyses performed with
model disparity detectors have shown that this is not
the case (Tsirlin, 2013; Tsirlin, Allison, & Wilcox, 2012;
Tsirlin, Wilcox, et al., 2012). Instead it appears that a
more sophisticated set of neural mechanisms tuned to
occlusion geometry is required.

Several computational models of biological vision
(referred to here as ‘‘biologically inspired’’) addressing
the mechanisms of da Vinci stereopsis have been
proposed in recent years. Watanabe and Fukushima
(1999) described a model in which occlusions are
detected explicitly from the output of feature-based

disparity detectors. The 3-D structure of the scene is
reconstructed from the initial disparity and occlusion
maps using traditional uniqueness and smoothness
constraints (Marr & Poggio, 1976) and a novel
occlusion constraint. Their occlusion constraint speci-
fies that if a point is detected as occluded there must be
an occluding point, such that points signaled as
occluded, with no potential occluders, are inhibited.
Hayashi, Maeda, Shimojo, and Tachi (2004) made the
Watanabe and Fukushima model more biologically
plausible by replacing edge-based disparity detectors
with binocular energy neurons (Ohzawa, DeAngelis, &
Freeman, 1990). They also added interocular inhibition
and temporal dynamics, which allowed their model to
predict simple binocular rivalry. Grossberg and Howe
(2003) and Cao and Grossberg (2005) proposed a

Figure 2. Depth from monocular occlusions. (A) The monocular bar is perceived to lie beyond the binocular rectangle (Nakayama &

Shimojo, 1990). (B) The occluding surface has an illusory right half induced by the presence of a monocular strip of random elements

(Tsirlin et al., 2010). (C) An illusory rectangular surface appears in front of the black lines (Gillam & Nakayama, 1999). (D) The

monocular gap creates a percept of two surfaces bending in depth away from each other (Gillam et al., 1999). The left and the central

half-images are arranged for crossed fusion and the central and the right half-images for divergent fusion.
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model of stereopsis in which monocular occlusions are
not detected explicitly but instead are identified
implicitly through competition between monocularly
identified luminance edges and binocularly identified
edges. In their model, depth in occluded areas is
computed by interpolation from binocular areas or by
double-duty matching. Assee and Qian (2007) have
argued that the preceding models are not completely
biologically plausible because they use binary (0 or 1)
or discrete representations of neuronal firing rates at all
(Watanabe & Fukushima, 1999) or some stages (Cao &
Grossberg, 2005; Hayashi et al., 2004) of processing
while real neuronal firing rates are variable and
distributed. They proposed a new model in which the
initial computation of disparity is made by energy
neurons, and their output is then propagated to V2
neurons selective for disparity edges (von der Heydt,
Zhou, & Friedman, 2000). Monocular occlusions are
not explicitly detected. Instead it is assumed that a
depth step signifies the presence of a monocularly
occluded region. Occluded areas are assigned the depth
of the further surface.

These models offer interesting hypotheses about the
underlying mechanisms of da Vinci stereopsis and
propose new, insightful constraints on matching; how-
ever, they also have several important drawbacks. First,
as suggested by Assee and Qian (2007), three of the
models use binary or discrete representations of neural
firing. More importantly, none of the models explicitly
use the width of the occluded regions to compute their
depth (or the depth of surrounding binocular regions
with a weak disparity signal). The psychophysical
evidence discussed above suggests that the minimum
depth constraint, computed from the occlusion width, is
the most likely basis for depth perception from
monocular occlusions. Moreover, judging by their
architecture, these models will not be able to predict
perceived depth correctly in several important classes of
stimuli. For example, they will not be able to reconstruct
illusory occluders in stimuli such as those shown in
Figure 2 because these models require the presence of
well-defined disparity around the occluded areas (e.g.,
textured surfaces). In the cases shown in Figure 2,
monocular regions are surrounded by textureless,
monochromatic areas with ambiguous disparity. Final-
ly, the models were tested on a very limited number of
monocular-occlusion test images (1–3), which makes it
difficult to evaluate the models thoroughly.

The goal of our work is to develop a computational
model of human depth perception that will (a) explain
the computation of depth from disparity and monoc-
ular occlusions in the visual system; (b) be built on a
solid theoretical basis stemming from psychophysical,
physiological, and computational data; and (c) produce
depth maps that closely correspond to observer
percepts for a wide variety of stimuli. To this end, we

first develop a theory of depth computation in da Vinci
stereopsis. We then formulate and implement a
biologically plausible computational model incorpo-
rating these principles. The model is tested on a large
battery of stimuli, and its performance is compared
with psychophysical results. Finally, we discuss the
results and the theoretical implications of the neural
architecture incorporated in our theory and model.

Model principles

The model proposed in this article is based on a
collection of principles intended to explain the com-
putation of depth from disparity and monocular
occlusions in the visual system. Unfortunately, no
physiological data is available on the mechanisms
involved in the computation of depth from monocular
occlusions because no one has performed single-cell
recordings with monocularly occluded regions as
stimuli. Thus the principles outlined below are derived
from the psychophysical and computational literature.
We group these principles to form a theory of Depth
from Monocular Occlusion Geometry (DMOG).

Monocular occlusions are detected explicitly—To
extract depth frommonocular occlusions using occlusion
geometry, occluded regions have to be detected first.
Moreover, it has been shown that computer vision
algorithms that explicitly detect (and use) monocular
occlusions (e.g., Lin & Tomasi, 2004; Min & Sohn, 2008;
Sizintsev &Wildes, 2007) are able to successfully recreate
depth maps in complex scenes and that they perform
better than algorithms that do not use occlusion
detection. Thus, in this model, occluded regions are
detected by several populations of specialized neurons.

The width of monocular regions is used to compute the
depth in these regions and adjacent binocular areas with
an unreliable disparity signal—Psychophysical findings
suggest that the minimum depth constraint is used by
the visual system to assign depth to monocular objects/
areas and to illusory occluders (Anderson, 1994; Gillam
& Nakayama, 1999; Grove & Gillam, 2007; Tsirlin et
al., 2010; Tsirlin, Wilcox, et al., 2012). In order to use
the minimum depth constraint to compute depth from
monocular occlusions, the width of the monocular zone
has to be determined. It has also been shown that the
depth signal originating from monocular occlusions
can affect (and capture) perceived depth in surrounding
binocular regions with unreliable disparity signals
(Gillam & Nakayama, 1999; Hakkinen & Nyman,
2001; Tsirlin et al., 2010). Thus, the width of the
monocular regions can also be used to compute depth
in adjacent binocular areas with ambiguous disparity.
In the model, these operations—occlusion width
computation and the resulting depth signal computa-
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tion and propagation—are performed by several
populations of specialized neurons.

Depth from monocular occlusions and disparity is

computed concurrently—Several psychophysical studies
have suggested that depth from monocular occlusions
and from binocular disparity is computed simulta-
neously in the early stages of visual processing (Gillam
& Borsting, 1988; Mitsudo, Nakamizo, & Ono, 2005;
Sachtler & Gillam, 2007). For example, Sachtler and
Gillam (2007) showed that the minimum possible time
required to process disparity-based and occlusion-
based depth was very similar. Moreover, recent work
with visually evoked potentials (Spang, Gillam, &
Fahle, 2012) has shown that stimuli in which depth
percepts are based on occlusion geometry produce
cortical responses at the same latencies as similar
stimuli in which depth is based on conventional
disparity. These findings suggest that monocular
occlusions are likely to be processed early, concurrently
with binocular disparity.

Monocular camouflage is interpreted as monocular

occlusion—It is possible for monocular regions to arise
due to camouflage when an object is positioned in front
of an identically colored surface and overlaps with it
completely in one eye but not the other (see also the
discussion of two-object arrangements). In this case,
the monocular object should obey the same geometric
constraints as monocularly occluded objects. Although

theoretically possible, monocular camouflage should be
quite rare in nature because the foreground and
background surfaces must have identical color and
luminance and the foreground has to be located
completely within the boundaries of the background
but only in one eye. Not surprisingly, experimental
evidence shows that very little depth is seen in stimuli
with configurations corresponding to monocular cam-
ouflage (the reader can appreciate this percept by cross-
fusing the central and the right images of Figure 2A)
and that this depth does not comply with camouflage
geometry (Gillam, Cook, & Blackburn, 2003; Na-
kayama & Shimojo, 1990; Tsirlin, Wilcox, et al., 2012).
Based on these results, it has been suggested that the
visual system might not be equipped to process
camouflage and instead interprets it as occlusion (see
extended discussion of this issue in Tsirlin, Wilcox, et
al., 2012). In our model, this principle is reflected in the
way depth in occluded regions is computed from their
width.

Depth signals from disparity detectors and monocular

occlusion detectors interact—Tsirlin et al. (2011) and
Tsirlin, Wilcox, et al. (2012) have shown that binocular
disparity signals can affect depth from monocular
occlusions when it is not completely constrained by
occlusion geometry. On the other hand, Hakkinen and
Nyman (2001) demonstrated that depth signals from
monocular occlusions can influence the perceived depth

Figure 3. Model overview. Filled arrows show feed-forward connections and hollow arrowheads show feedback connections.
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of binocular areas that contain repeating texture
(wallpaper patterns). This evidence suggests that the
two depth signals interact in complex ways.

Model description

Based on our DMOG theory, we have designed a
computational model, outlined in Figure 3. Depth
processing begins with the initial disparity computation
performed by a population of energy neurons. Fol-
lowing that, occlusions are detected by several neuronal
populations, and their widths are computed. Another
block of neurons detects luminance and disparity edges.
Reliability and match goodness metrics that are used in
the final computation of disparity (see below) are also
computed from the initial disparity estimates. Finally,
the output of all these neurons is used by 3-D surface
neurons to iteratively reconstruct the 3-D structure of
the scene. Importantly, all model neurons have variable
(distributed) firing rates similar to real neurons. Below,
each of the components is described in detail, and the
mathematical formulations are provided for all types of
neurons used in the model. For convenience, Table 2 in
Appendix A summarizes all symbols and functions
used in the mathematical formulation of the model.

Initial disparity computation: Energy neurons
and interneural connections

The initial computation of disparity is performed
using a network of disparity detectors modeled as
energy neurons (DeAngelis, Ohzawa, & Freeman, 1995;
Ohzawa et al., 1990). The model has been described in
great detail by others (e.g., Cumming & DeAngelis,
2001), so here we provide the minimum description of
the basic energy model and detailed descriptions of our
modifications.

The disparity energy model postulates that simple
neurons compute the sum of the left and the right
images filtered with their respective receptive fields
(RFs), which can be described by Gabor functions.
Disparity selectivity in these neurons can be achieved
through two mechanisms: (a) position shift, a shift
between the positions of the RFs in the two eyes, and
(b) phase shift, a shift in the phase of the Gabor in the
two eyes. Because both phase and position shift
mechanisms are used in the visual system (Anzai,
Ohzawa, & Freeman, 1999), both mechanisms are
included in our version of the model (similar to Fleet,
Wagner, & Heeger, 1996, and others). We used the
following Gabor filter to describe the left RF of a
simple binocular neuron:

fLðx; y; dL;uLÞ ¼ Gaussðx; y; dLÞ�sinðx; y; dL;uLÞ
ð1Þ

Gaussðx; y; dLÞ

¼ 1

2prxry
�e
�1

2

ðxþdLÞsinhþycosh
rx

� �2

þ ðx dLcosh�ysinhÞ
ry

� �2
� �

ð2Þ

sinðx; y; dL;uLÞ ¼ cos x0ððxþ dLÞsin hÞ þ uL½ �
ð3Þ

where dL is the position shift of the left RF, rx and ry

are the horizontal and vertical Gaussian widths, h is the
preferred orientation, x0 is the peak preferred fre-
quency, and uL is the left phase parameter. The right
RF has the same definition but with a positional shift
dR and a phase shift uR.

In our energy neurons, the phase-shift mechanisms
are used for disparities smaller than p for each
preferred frequency (dL/R ¼ 0). For disparities larger
than p, position-shift mechanisms are used (uL/R ¼ 0).
Three aspects of disparity computation should be
noted. First, oriented RFs with phase-shift disparity
tuning do not code strictly horizontal disparity. They
code disparity orthogonal to their orientation because
the phase shifts orthogonally to the neuron’s orienta-
tion. This aspect is problematic because most dispar-
ities in natural viewing are horizontal due to the
horizontal separation of the eyes. In contrast, position-
shift neurons always encode horizontal disparity
regardless of their orientation. Thus, as a simple
solution to this problem, only position shifts are used
for orientations other than vertical (uL/R¼ 0). Second,
the matches are made along the same epipolar lines in
the two images (epipolar constraint). Third, the shift in
the phase or the position of RFs that achieves disparity
tuning is performed in one eye only as was done in
previous models (e.g., Chen & Qian, 2004).

The complex neurons sum the squared responses of
two linear neurons S1 and S2 in quadrature phase

C0 ¼ S2
1 þ S2

2 ð4Þ
Mathematically, the classic energy model computes a

quantity that comes close to a cross-correlation
between images filtered with the neuron’s RFs.
However, this quantity contains not only correlation
information but also the monocular energy of the two
images, which makes it very prone to false matches
(Fleet et al., 1996; Read, 2010; Read & Cumming,
2006). Given this, disparity estimates from the output
of classic energy neurons are extremely noisy. This
problem can be solved by normalizing the output of the
complex neurons C0 by the sum of squared monocular
energy responses of the monocular RFs of the two
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simple neurons S1 and S2:

C ¼ C0

ðIf1LÞ2 þ ðIf1RÞ2 þ ðIf2LÞ2 þ ðIf2RÞ2
; ð5Þ

where S1¼ If1Lþ If1R and S2¼ If2Lþ If2R and I is the
image falling on the RFs.

Normalization with respect to monocular energy has
been proposed as a biologically plausible way to bring
the responses of the energy model closer to observed
human performance (Allenmark & Read, 2011; Heeger,
1992; Read, 2010).

Another way to reduce false matches in the classical
energy model is to pool responses across orientations
and spatial frequencies in combination with local
spatial pooling (Fleet et al., 1996). In our model,
orientation pooling is performed at each scale, and
responses at all scales are pooled to produce the final
response. Spatial pooling is performed for each
orientation and each scale and on the final response.
All pooling is performed by averaging the disparity
profiles (weighted by a 2-D Gaussian for spatial
pooling) of the different neurons (see Figure 4).

In our energy model, for each location x,y of the
retinal image, there is a population of complex neurons
C centered on x,y and tuned to the full ranges of
disparity, orientation, and spatial frequency as specified
above. The final, pooled (as specified above) response
of this population for the range of disparities (�dm, dm)
is labeled C*

x;y and represents the disparity profile of
location x,y. It can be represented graphically as shown
in Figure 4. The pooled response of the population to
one particular disparity d is denoted Cx,y,d (one point
on the curve of Figure 4).

Monocular occlusion detection

Many techniques have been proposed in the com-
puter vision literature to detect monocular occlusions
(Egnal & Wildes, 2002). However, most require reliable
estimates of disparity on both sides of the occluded

region. This is an important point because in stimuli
such as those shown in Figure 2 the disparity
surrounding the monocular regions is ambiguous and
unreliable due to the lack of texture although depth
from monocular occlusions is readily perceived. Given
this, we have chosen two complementary metrics for
the detection of monocular occlusions that do not
depend on reliable disparity estimates around the
occluded regions: match goodness and left-right match
correspondence. Egnal and Wildes found both tech-
niques to be effective at detecting occlusions with left-
right match correspondence outperforming match
goodness. However, left-right match correspondence
was inferior in areas with (only) low spatial frequency,
and match goodness performed well in these areas,
making these approaches complementary. These heu-
ristics are implemented in a biologically plausible
fashion here, using a distributed representation of
neuronal firing.

Match goodness

Match goodness is defined here as the ratio of the
strength of the maximum response of Cx,y,d neurons for
a given location to the maximum response to the given
image within the whole population of disparity
detectors.1 Normally, for monocularly occluded pixels,
this ratio should be lower than for binocular areas
because no true match exists. Thus, MGx,y neurons
compute the difference of the match goodness ratio at
each location x,y from one, such that a higher response
of these neurons indicates a higher likelihood that
location x,y is occluded:

MGx;y ¼ 1�
MAXðC*

x;yÞ
M*

" #
h1

ð6Þ

where ½x�h1
indicates rectification with respect to the

threshold h1 or with respect to 0 where [x]0 is used
(notation adopted from Reynolds & Heeger, 2009),
such that the neuron only fires when its output is larger
than the specified threshold. M* is computed by
another type of neuron and is defined as follows:

M* ¼ maxðCx;y;dÞ for all possible x; y and d: ð7Þ

Left-right match correspondence

In classic left-right match correspondence (called
left-to-right check in the computer vision literature),
disparity maps are computed first using the right image
as the origin and then using the left image as the origin.
For binocular image locations, the match made in one
direction normally corresponds to the match made in
other direction. Locations for which the matches differ

Figure 4. Disparity profile. The pooled population response C*
x;y

for the location x,y is plotted as a function of disparity. In this

case, the population responds maximally to disparity of 2 px.
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substantially are labeled as monocularly occluded. This
procedure is illustrated in Figure 5.

Because the model uses a distributed representation
of neuronal firing, we cannot simply compare the
disparities generating the maximum response for each
image location because this will entail converting
neuronal output to a binary representation. Instead,
disparity profiles are compared. Before describing the
neurons that compute left-right match correspondence,
new notation needs to be introduced. Let the response
of a population of complex neurons C*

x;y with all the
left eye RFs centered at location x,y be denoted as CL*

x;y.
Accordingly, a population of complex neurons C*

x;y
with all the right eye RFs fixed at location x,y is
denoted CR*

x;y. The response of the C
L*
x;y neurons tuned to

a specific disparity is denoted CL
x;y;d for the left eye and

CR
x;y;d for the right eye.
At each location x,y, there are two types of neurons

that together produce a left-right match correspon-
dence response. The first type, Rx,y,d (Equation 8),
computes the summed difference between the disparity
profiles of neurons CL*

x;y and CR*
xþd;y for a given disparity

d (see Figure 6). When location x,y has a well-defined
disparity d0, then the CL*

x;y disparity profile will have a
peak at d0, and the matching CR*

xþd 0 ;y profile will have a

peak at �d0. Thus, the summed point-by-point differ-
ence between these profiles after they are shifted with
respect to each other by 2d0 (and normalized) will be
very small. On the other hand, disparity profiles for
nonmatching pixels will be different (after the appro-
priate shift and normalization) and will yield a
relatively large difference.

The shift of the two profiles CL*
x;y and CR*

xþd;y with
respect to each other is achieved simply by comparing
each CL

x;y;d
0 response with a CR

xþd;y;d 0�2d
response for

each disparity d0. Before the subtraction, the two
profiles are normalized and cubed. The cubing is done
to amplify the true peak of the profile relative to the
false peaks:

Rx;y;d ¼
Xd2

d 0¼d1

jnðCL
x;y;d 0Þ3 � nðCR

xþd;y;d 0�2dÞ
3j ð8Þ

where d1¼max(�dm, d� dm) and d2¼min(dm, dþ dm)
and the function n(x) is a signal normalization
function:

nðxÞ ¼ x

MAXðxÞ

� �
ð9Þ

where x is a vector.
The computation performed by Rx,y,d neurons is

illustrated in Figure 6. For convenience, the collection
of Rx,y,d responses for all d in (�dm, dm) is denoted R*

x;y.
For locations x,y with well-defined disparity d0, the

response of the neuron Rx,y,d0 should be very close to
zero, indicating that both ‘‘left-to-right’’ and ‘‘right-to-
left’’ computations yielded the same disparity estimate.
In contrast, in monocularly occluded regions that lack
well-defined disparity, all Rx,y,d are likely to yield
results much higher than zero. Thus, at each location
x,y, out of all possible responses of Rx,y,d neurons, the
magnitude of the minimum response represents the
likelihood that this location is monocularly occluded.
Accordingly, LRCx,y neurons output the minimum
Rx,y,d response if it is higher than the threshold h2:

LRCx;y ¼ MINðR*
x;yÞ

h i
h2

ð10Þ

Note that textureless areas would be identified as
binocular by these neurons because the shape of their

Figure 5. Left-right match correspondence example. Blue arrows indicate a right-to-left and red arrows a left-to-right disparity

computation. For the binocular case, both directions match the same points in the two images. In the case of the monocular tennis

ball in the left image, the left-to-right computation matches it to some binocular point p in the right image. However, in the right-to-

left computation, p is matched to itself in the right eye. Thus, the match is different in the two computations, and the tennis ball in

the left image is marked as monocularly occluded.
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disparity profiles would be flat and identical (or similar)
in both left-to-right and right-to-left computations,
thus producing a small LRCx,y response.

Integrated monocular occlusion detection

The output of the two occlusion-detection mecha-
nisms is combined by a third type of neuron that signals
the presence of monocularly occluded regions. These
neurons only fire when the combined input from the
two mechanisms is higher than a threshold h3:

OCCx;y ¼ nðMGx;yÞ þ nðLRCx;yÞ
� 	

h3
ð11Þ

Computing the width of monocular areas

After monocular occlusions are detected, their widths
must be determined to compute the depth of monocular
areas. The width computation is performed by a
population of neurons that have an end-stopped
architecture with a wide excitatory center (area EC)

Figure 6. Biologically plausible implementation of the left-right match correspondence. For each pixel x,y, the difference between the

left-to-right disparity profile CL*
x;y, shown in red, and all the potential matches CR*

xþd;y, shown in black, is computed. This computation

is performed by Rx,y,d neurons. The minimum of the R*
x;y responses, shown as the red dot on the blue curve in the bottom row, is

chosen as the left-to-right check response for location x,y.

Figure 7. (A) The width of monocular occlusions is signaled by end-stopped neurons of different widths. The excitatory center changes

size, and the inhibitory side lobes have the same size for all neurons. (B) At each location x,y, there is a population of end-stopped

neurons tuned to different widths. (C) For each width, there is a population of neurons for which different parts of their excitatory

centers fall on x,y. The largest response will be elicited from the neuron with the excitatory center that matches the size and the

location of the monocularly occluded area (shown in dashed red line in B and C).
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positioned between two narrow inhibitory bands (areas
IB) and which receive input from the OCC neurons
described in Equation 11. The neurons have different
widths and respondmaximally when amonocular region
has a width and locationmatching those of the excitatory
center. These neurons are illustrated in Figure 7. The
response of each neuron is normalized by the width of
the excitatory region (this is done to ensure that large
RFs do not have a larger maximum response than
smaller RFs). For each possible occlusion width and for
each location x,y, there is a population of end-stopped
neurons with different parts of their excitatory centers
positioned at x,y. The relative position of the excitatory
center with respect to x,y is controlled with shift
parameter s:

ESx;y;w;s ¼

X
x 0;y 0�EC�s

OCCx 0;y 0 �
X

x 0;y 0�IB�s
OCCx 0;y 0

w

2
664

3
775

h4

ð12Þ
ES neurons fire when their response is larger than a

threshold h4. The response of the population of ES
neurons tuned to different excitatory center locations s
about the position x,y is denoted ES*

x;y;w. The final
response Wx,y,w to each potential width w at each
location x,y is equal to the response of the maximally
excited neuron in ES*

x;y;w. Because ES*
x;y;w neurons

might respond to some locations immediately adjacent
to the monocular region, the response of W neurons is
modulated by weighted input from the OCC neurons
such that the width neurons fire only if the location x,y
was identified as occluded in the previous step:

Wx;y;w ¼ MAXðES*
x;y;wÞ � ðc2 �OCCx;y·c1Þ

h i
0

ð13Þ
where c1 is the weight of the inhibitory connections from
OCC neurons and c2 is the modulating factor of these

connections. The response of the population of W
neurons tuned to different widths at position x,y is
denoted W*

x;y and referred to as the occlusion width
profile (analogous to the disparity profile) (see Figure 8).

Other metrics

Reliability

In locations devoid of texture (or with a repetitive
texture), a maximum C*

x;y response might be obtained
for several disparities. Although response magnitude at
these disparities might be large (high match goodness),
these disparity estimates are not reliable. The reliability
metric used here is a measure of how reliable or robust
disparity estimates are for a particular location. It is
somewhat similar to the ‘‘peak ratio metric’’ used to
predict locations at which potential false matches could
be made (Egnal, Mintz, & Wildes, 2004; Little &
Gillett, 1990); however, here it is used in the final
computation of the 3-D surfaces as a weight on the
excitatory connections between neurons. Accordingly,
here we estimate reliability as the difference between
the magnitude of the largest response of the population
at each location x,y and the magnitude of the second
largest response at this location (see Figure 9).

To compute reliability, first, a population of neurons
computes the difference between the maximum re-
sponse in the population at x,y among all disparities
and the maximum response of the population at x,y
among all disparities except for disparity d:

REx;y;d ¼MAXðC*
x;yÞ �MAXðC*�d

x;y Þ ð14Þ

where C*�d
x;y is the disparity profile at location x,y with

the response to disparity d taken out. If the true
disparity at location x,y is d0 such that MAX(C*

x;y) ¼
Cx,y,d0 then all the REx,y,d for d 6¼ d0 will give an output
of zero. Only the neuron REx,y,d0 could have a response
different from zero. This neuron will output the
difference between the maximum and second maximum
response. Consequently, reliability is computed as the
maximum of all the REx,y,d responses:

RELx;y ¼MAXðRE*
x;yÞ ð15Þ

Overall match goodness

The overall match goodness metric used here
encodes the relative strength of the response of
disparity detectors at each location. It is used in the
final processing stage to build a 3-D surface by serving
as a weight on excitatory connections between 3-D
surface neurons. Match goodness for each location x,y
is computed as the ratio of the maximum response for a
given pixel to the maximum response within the whole
population:

Figure 8. Occlusion width profile. The response of occlusion

width detectors Wx,y,w for the location x,y is plotted as a

function of width. In this case, the population responds

maximally to a width of 3 px.
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OMGx;y ¼
MAXðC*

x;yÞ
M*

ð16Þ

Edge detection

Disparity and luminance edges are detected and used
to control the spreading of the disparity signal from one
object to another. Disparity and luminance edge maps
are combined to create one edge map as described below.

Disparity edges

Disparity edges are computed using simple on-off
neurons. The RFs of these bipartite neurons have an
excitatory half and an inhibitory half and a vertically
elongated shape. They operate on the output of the
occlusion detection neurons (OCC). They respond
optimally when their excitatory region (area ER) is
positioned on a disparity edge (OCC neurons are ‘‘on’’
at these locations) and their inhibitory region (area IR)
is located just off this edge.

DEx;y ¼
X

x 0;y 0�ER

OCCx 0;y 0 �
X

x 0;y 0�IR

OCCx 0;y 0

" #
h5

ð17Þ

Luminance edges

Luminance edge detectors LEx,y compute the 2-D
spatial gradients in an image and so emphasize regions
of high spatial frequency that correspond to edges. They
are modeled after the well-known Sobel edge detector
(Danielsson & Seger, 1990), and thus, the details are
omitted here for brevity. The luminance edge map is
computed using one of the two images depending on the
direction of the disparity computation (i.e., if direction

is left-to-right, then the left image is used to compute
luminance edges).

Combined edges

Finally, luminance and disparity edges are added to
produce a combined edge map:

EDx;y ¼ DEx;y þ LEx;y ð18Þ
The edge map is then used to perform rough object

segmentation. It is assumed here that object segmen-
tation is performed by a higher-level process that sends
feedback connections to the neurons in the early visual
areas. Feedback modulation based on figure-ground
relationships and object segmentation is a well-docu-
mented physiological phenomenon (Angelucci et al.,
2002; Hupe et al., 1998; Schoenfeld et al., 2003).
Because object segmentation is a very complex process
and it is beyond the scope of this work, it is not
implemented in a biologically plausible way here. For
the purposes of the model formulation, the output of
the higher-level neurons is denoted as OBJx,y,x0,y0. Its
output is positive when two locations x,y and x0,y0

belong to the same object and zero otherwise:

OBJx;y;x 0;y 0

¼ 1 if x; y and x0; y0 belong to the same object
0 if x; y and x0; y0 belong to different objects



ð19Þ

Three-dimensional surface neurons: Final
computation of disparity

In the final stage of the model, the 3-D surface is
constructed by aggregating information from all
previous stages in an iterative manner (to allow for
disparity interpolation and propagation) and assigning
final disparities to both monocular and binocular

Figure 9. Computing reliability. Reliability is computed as the difference between the largest response and the second largest

response of the population of neurons at each location. This difference is high when the response curve is steep as is shown in the

left-hand graph. In this case, the disparity estimate can be considered reliable. On the other hand, when the curve is flat (or has more

than one peak of the same magnitude) because the population is responding similarly to many different disparities, the difference

between the two points is small. In this case, the disparity estimate is not reliable.
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regions. Disparities are computed differently for
locations that were identified as monocularly occluded
and those that were identified as binocular. The 3-D
surface neurons, 3Dx,y,d, sum weighted responses of
two types of neurons: MONx,y,d, which compute the
depth for monocularly occluded regions, and BINx,y,d,
which compute the depth for binocular regions. Both
types of neurons exist at each location x,y, and their
output is modulated by inhibitory influences such that
BINx,y,d is suppressed if x,y is identified as a monocular
location and MONx,y,d is suppressed when x,y is a
binocular location:

3Dx;y;d ¼ n
�
BINx;y;d �OCCx;y·c1

� 	
0

þ MONx;y;d � ðc2 �OCCx;y·c1Þ
� 	

0

�
ð20Þ

where c1 is the weight of the inhibitory connections
from OCC neurons and c2 is the modulating factor of
these connections. In all cases below in which the
output of the 3Dx,y,d neurons is used at the first
iteration, when this output is just background noise,
the disparity profiles are taken instead from the
corresponding Cx,y,d complex energy neurons. In other
words, for the first iteration:

3Dx;y;d ¼ Cx;y;d ð21Þ
Reliability and overall match goodness are recom-

puted as specified in Equations 15 and 16 using the
output of the 3Dx,y,d instead of the output of Cx,y,d

neurons after each iteration.

Depth in monocular areas

For monocularly occluded locations, equivalent
disparity is derived from the width of the monocular
region and the eye of origin (occlusion geometry) along
with the disparity information in neighboring binocular
areas. We assume that the monocular region results
from occlusion (not from camouflage). The disparity
estimates for occluded regions are obtained by collect-
ing support from neighboring binocular regions via
BSx,y,d neurons and the neighboring monocular regions
via MSx,y,d neurons:

MONx;y;d ¼ BSx;y;d þMSx;y;d ð22Þ

Support from binocular areas

The contributing binocular regions are areas of set
size H · W (depending on the maximum disparity the
energy neurons are tuned to) to the left, right, above, and
below the monocular region, labeled as NL, NR, NA,
andNB, accordingly. Before being added, the outputs of
3Dx,y,d neurons in each region NX are weighted by

reliability REx,y,d and summed to obtain 3DRNX;d

(Equation 24). Only neurons at binocular positions x,y
contribute to 3DRNX;d

as input from positions detected as
monocular is inhibited. For an occlusion in the left eye,
the response is computed as follows:

BSx;y;d ¼ 3DRNL;d
þ 3DRNA;d

þ 3DRNB;d

þMAXð3DRNR;d 0
·Wx;y;wÞ ð23Þ

where d0,w� [d0þw¼d] and 3DRNX;d
aredefinedas follows:

3DRNX;d
¼
X

x;y�NX

3Dx;y;d·REx;y �OCCx;y· c1

� 	
0

ð24Þ
where c1 is the weight of the inhibitory connections from
OCC neurons.

Because an occlusion arrangement is assumed, in
Equation 23, the disparity signals from NL, NA, and
NB (left, above, and below the monocular region) are
taken without adjustment because the occluded area is
assumed to be coplanar with these regions as shown in
Figure 10. On the other hand, region NR, to the right
of the occlusion, is assumed to be the occluding edge.
Because according to occlusion geometry the disparity
of the occlusion is equal to the disparity of the
occluding edge plus the occlusion width (Figure 10), the
3DRNR;d

input is shifted by the occlusion width before it
is integrated with the rest.

Because the responses of all neurons in the model are
distributed, we cannot simply shift the disparity profile
3D*

RNR
by the width that generated the largest response

in the width profile W*
x;y because that would force a

switch to a binary representation. Instead, the width
and the disparity profiles of the NR region have to be
carefully combined in order to be added to the new
disparity profile for location x,y. Each possible
disparity d can be obtained through several combina-
tions of disparities d0 and widths w. For example,
disparity d¼ 5 can result from w¼ 3, d0¼ 2; w¼ 4, d0¼
1; w¼ 5, d0¼ 0; and other combinations. Consequently,
for each disparity d, support is collected from all
possible combinations of w and d0 by multiplying

Wx,y,w with 3DR
NR;d

0 . The maximum response of these

possible w and d0 combinations is taken as the response
to each disparity d. This part of the computation in
Equation 23 is illustrated in detail in Figure 11.

Support from monocular areas

Support from neighboring monocular locations is
collected by summing the disparity profiles of the
locations within the support region SR that are
identified as occluded. The contributions from each
location within the support areas are weighted by a 2-D
Gaussian, Gaussx;y;r1

with standard deviation r1
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centered on x,y and by the reliability and match
goodness of each particular neighboring location.
Moreover, locations falling within the support neigh-
borhood but belonging to a different object are
inhibited by feedback from a higher-level process via
neurons OBJx,y,x0,y0 and do not contribute to the
computation (see section ‘‘Combined edges’’):

MSx;y;d

¼
X

x 0;y 0�SR

3Dx 0;y 0;d·Gaussx 0;y 0;r1
·REx 0;y 0

�
·MGx 0;y 0·OBJx;y;x 0;y 0

�ðc2 �OCCx;y·c1Þ�0 ð25Þ

Propagation of disparity from monocular to
binocular regions

Once the final disparity profile of an occluded
location is established, the disparity signal can propa-
gate into the binocular area that is supposed to occlude
the monocular region if the reliability of the occluding
binocular area is low (Figure 12). Disparity from
occluded areas is propagated only horizontally and is
stopped when either the next edge (luminance or
disparity) is reached or reliability increases beyond a
certain threshold. The propagation is mediated through
dedicated neurons PROPx þ s,y,d.

PROPxþs;y;d ¼ maxð3Dx;y;d 0·Wx;y;wÞ
�
�ðc2 �OCCx;y·c1Þ � EDxþs;y·c3

�RExþs;y·c4�0 ð26Þ
where d0, w � [d0 þw¼ d] and c3 and c4 are the weights
on the connections with edge detectors and reliability-
computing neurons accordingly.

The disparity signal propagating from the monocular
into the binocular areas has to be adjusted by the width
of the monocular area according to occlusion geometry.
As shown in Figure 12, the disparity of a right occluding
edge should be equal to the disparity of the occluded
region minus the width of the occluded region (assuming
negative values for crossed and positive values for
uncrossed disparities). The adjustment of the disparity of
the occluded region by the width of the occluded region
in Equation 26 is done in the same way as described in
the previous section and shown in Figure 11.

Depth in binocular areas

The depth of binocular locations x,y is computed by
accumulating support from the binocular locations in
the surrounding region, SR, and the disparities prop-
agated by the monocular occlusion regions via PROPxþ
s,y,d (if any). In both cases, the support is weighted by a
2-D Gaussian, Gaussx;y;r2

, with standard deviation r2
centered on x,y and by the reliability and match
goodness of each support region. Locations falling
within the support region but belonging to a different
object are inhibited by feedback from a higher-level
process via OBJx,y,x0,y0 and do not contribute to the
computation (see section ‘‘Combined edges’’):

BNx;y;d ¼
X

x 0;y 0�SR

3Dx 0;y 0;d·Gaussx 0;y 0;r2

�
·REx 0;y 0·MGx 0;y 0·OBJx;y;x 0;y 0 �

þ
X

x 0;y 0�SR

PROPx 0;y 0;d·Gaussx 0;y 0;r2

�

·
1

REx 0;y 0

� �
·OBJx;y;x 0;y 0 �

ð27Þ

Figure 10. Collection of support from binocular areas during the computation of monocular regions’ disparity. In all panels, binocular

areas are shown in white and monocular areas in grey. (A) A bird’s eye view of a foreground surface occluding some of the

background in the right eye, creating a monocular occlusion of width w. (B) The black square is a point inside this monocular region

surrounded by binocular regions: NL, NR, NA, and NB (left, right, above, below). Regions NL, NA, and NB contribute their disparity

signals, dL, dA, and dB unaltered as it is assumed that they are coplanar with the occluded monocular region. The disparity dR of

region NR is adjusted by the width w of the occluded region because it is assumed that dR is the occluding edge.
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Disparity assignment

Final depth maps were computed from the response
of the 3D*

x;y neurons after all model iterations were
completed using the zero-bias method described in
Tsirlin, Wilcox, et al. (2012). In this method, the
disparity corresponding to the maximum response of
the population is taken as the true disparity at each
point. If more than one disparity generates the
maximum response, the disparity closest to zero is used
as the final disparity. This method is motivated by
psychophysical studies showing that in ambiguous
cases the visual system tends to prefer small disparities

over larger ones (Banks & Vlaskamp, 2009; Brewster,

1847; McKee, Verghese, Ma-Wyatt, & Petrov, 2007;

Prince & Eagle, 2000). Moreover, this method gave

model estimates that were closest to those of observers

in the experiments of Tsirlin, Wilcox, et al. (2012).

Implementation details

The model and the script for stimulus generation were

implemented in MATLAB 7.10 running on Mac OS X

Version 10.7 on a 2.8 GHz Intel Core MacBook Pro.

Figure 11. Using occlusion geometry to assign disparity in occluded regions. The red curves show the summed disparity profile 3D*
RNR

region, which is assumed to occlude position x,y. The blue curves show the width profile of location x,y. According to occlusion

geometry, the width of the occluded region must be added to the disparity of the occluding edge to produce the disparity of the

occluded region. Because disparity and width representations are distributed, all possible combinations of widths and disparities

must be considered. The left column shows the different combinations of widths w and disparities d0 that produce disparities d¼ 5, d

¼4, and d¼3. For each possible combination, the 3DR
NR;d

0 signal is multiplied by the appropriate Wx,y,w signal as shown in the middle

column. Then the maximum combination response for each disparity d is selected to produce the final disparity profile shown in the

rightmost column.
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Model evaluation

Test image battery

The model was tested on a large battery of images
(Figures 13 through 16) that included the majority of
stimulus types used in the psychophysical studies of da
Vinci stereopsis. Our choice of test stimuli was
motivated by our desire to directly relate the model
performance to human perception under a broad range
of conditions. For each of the eight monocular
occlusion stimulus types, three occlusion widths were
tested to verify whether the model could predict the
dependence of perceived depth on the width of the
occluded region (see Introduction and Figure 1). We
also added two types of richly textured stimuli that
have often been used to test stereo algorithms and
models, namely a dense random-dot stereogram (RDS)
and a stereo photograph of a map from the Middlebury
database (Scharstein & Szeliski, 2002). For the RDS
stimulus, three disparities were tested. All synthetic

images were generated using custom MATLAB scripts
together with disparity and occlusion ground truth
maps. For each of the synthetic images, we selected a
region of interest at which depth was postulated to be
perceived on the basis of monocular occlusions (or
disparity in RDS). The rectified image and the ground
truth of the map photograph were taken from the
Middlebury database. In total, there were 28 images in
the test battery (eight monocular occlusion stimuli ·
three separationsþRDS stimulus · three disparitiesþ
the map photograph).

Note that, for many of the images, there are no
objective ground truth maps, so the ground truth maps
are either based on theory, empirical data, or both. For
example, it is not clear what disparity should be assigned
to textureless background surfaces in most of the
synthetic images in Figures 13 through 16 because many
disparities would elicit a maximum response from the
population of disparity detectors. We chose to assign
zero disparity to these regions because the visual system
has a small disparity bias in ambiguous regions (Banks
& Vlaskamp, 2009; Brewster, 1847; McKee et al., 2007;

Figure 12. Computing and propagating disparity in monocular regions. (A) A bird’s eye view of a foreground surface occluding some of

the background in the right eye, creating a monocular occlusion of width w. In all panels, binocular areas are shown in white and

monocular areas in grey. (B) When the occluding surface has a reliable disparity, its disparity d1 is used to compute the disparity of

the monocular region, d1þ w. In (C), the occluding surface does not have a reliable disparity (e.g., no texture or luminance-defined

edges). In this case, the disparity of the monocular region, d2, is estimated using the disparity of the binocular area to the left of it.

Then the disparity of the unreliable area to the left of the monocular occlusion is determined by using the occlusion width, d2� w,

then propagated over the right edge.

Parameter Value Parameter Value

Energy neurons (EN) preferred spatial frequencies 0.0625, 0.0877, 0.125, 0.1786, and 0.25 pixels/8 h5 2

EN preferred orientations 08, 308, 608, 1208, 1508 c1 10

EN preferred disparities (�dm, dm) �30 to þ30 pixels c2 8

EN RF aspect ratio 2 H · W 2 · 15

h1 0.3 c3 10

h2 0.3 c4 10

h3 1 r1 15

h4 0.2 r2 5

Table 1. Model parameters used in testing.
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Prince & Eagle, 2000), and this preference is also
reflected in the model in the form of the zero-bias
disparity selection method. Moreover, it has been shown
that disparity can be extrapolated from binocular
features to regions lacking explicit disparity information

(Takeichi, Watanabe, & Shimojo, 1992), and in the
synthetic (non-RDS) stimuli used here, the binocular
features have zero disparity. For the monocular gap and
monocular intrusion stimuli, there are several possible
ground truth maps as there are several interpretations

Figure 13. Model results for densely textured images. (A) Stimulus. (B) Results for disparity 8px for the RDS. (C) Mean disparity

estimates of the central square of the RDS for three different disparities.

Figure 14. Model results for illusory occluder stimuli. (A) Stimulus. (B) Results for disparity�10px and occlusion width 10px for the

RDS and occlusion width 12px for the other stimuli. (C) Mean disparity estimates of the region of interest (illusory occluder) for three

different occlusion widths. The stereograms are arranged for crossed fusion.
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consistent with the stimulus configuration (and observ-
ers report several different percepts). In the analysis of
the model results for these stimuli, we use the ground
truth map that is the closest to the model output.

Methods

The same model parameters were used to test all
stimuli. The parameters are listed in Table 1 in order of
their appearance in the text. The parameters pertaining
to the energy model are based on previous modeling
and physiology data. Several parameters, such as H ·
W and r1 and r2, depend on the disparity range (�dm,
dm) supported by the model. Other parameters were
estimated empirically.

To eliminate the effect of simple edge detection on
model performance and to obtain the best results
possible, the edge maps used in the computations were
precomputed. This is a reasonable alteration because
edge detection is not the focus of the model. In pilot
experiments, in which the simulations were run with the

edges computed by edge detectors, the results were
close to those reported here but somewhat noisier in
two cases with textured images (having many small
edges). The overall error rate for the final depth map
for the textured illusory occluder stimulus of Tsirlin et
al. (2010) was larger by 2% and for the map image by
10% when the edges were computed by edge detectors.
The differences for other stimuli were less than 1%. The
rates of true positives and false positives in occlusion
detection were exactly the same for both methods of
edge estimation because occlusion detection does not
depend on edge detection in the model.

Results

The maps computed by the model for each stimulus
type are shown in Figures 13 through 16. All figures
show the stimuli (As), detailed results of simulation
trials with one of the occlusion widths (or disparities)
(Bs), and plots showing the estimated mean disparity in
the regions of interest for all occlusion widths (or

Figure 15. Psychophysical results displayed for comparison with the model. In all cases, estimated disparity (or depth) is plotted as a

function of occlusion width. (A) Results for the illusory occluder stimulus of Tsirlin et al. (2010) adapted from Tsirlin et al. (2010)

(means for all observers). (B) Results for the illusory occluder stimulus of Gillam and Nakayama (1999) adapted from Tsirlin et al.

(2011) and Gillam and Nakayama (1999) (means). (C) Results for the illusory occluder stimulus of Liu et al. (1994) adapted from Tsirlin

et al. (2011) (means) and Liu et al. (1994) (only one observer). (D) Results for the monocular intrusion stimulus adapted from Gillam

et al. (1999) (means). (E) Results for the monocular gap stimulus adapted from Cook and Gillam (2004) (means). (F) Two-object

arrangements with a bar and disc in occlusion configuration and with a bar in camouflage configuration. Adapted from Tsirlin,Wilcox,

et al. (2012) (means).
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disparities) (Cs). In each C plot, the hatched line shows
the disparity predicted based on viewing geometry.
Each detailed results plot B depicts:

� The ground truth map on which darker colors
indicate depths closer to the observer
� The initial disparity map output by the energy
neurons on which darker colors indicate depths closer
to the observer
� The final disparity map output by the model on which
darker colors indicate depths closer to the observer
� The computed occlusion map on which brighter
colors indicate greater probability the pixel is
occluded

The reported rates of true positives for occluded
pixels are computed as the ratio of occluded pixels
detected by the model to the total number of occluded
pixels. The reported rates of false positives are computed
as the ratio of binocular pixels signaled as occluded to
the total number of occluded pixels. The two ratios
represent an average of the ratios for the three occlusion
widths/disparities unless specified otherwise.

On average, the complete model reduced the
percentage of pixels with incorrect disparities by half
compared to initial estimates made by the energy
neurons alone. The overall rate of true positives in
occlusion detection, averaged across all images, was
80%, and the rate of false positives was 30%. This is
comparable to the rates of the best occlusion-detection
methods evaluated in Egnal and Wildes (2002). Note
that this level of performance of the DMOG model was
obtained with the same set of parameters for all images.
Performance could be improved further by selecting an
optimal set of parameters for each individual stimulus.

Densely textured synthetic and natural
stereograms

The model performed quite well with densely
textured images, both synthetic and natural. Figure 13
(top) shows the model output for a photograph
showing a map leaning against a textured background.
The initial output of the energy neurons provided very
noisy estimates in the monocularly occluded region
near the right edge of the map. The DMOG model
improved on this result by detecting the monocular
region (85% true positives, 11% false positives) and
assigning it a proper disparity.

Model results for the RDS are shown in Figure 13
(bottom). As expected, the initial disparity estimates
provided by the energy model were accurate in all areas
except for the monocularly occluded region to the left
of the central square, which is characterized by
spurious matches. The model corrected this problem by
detecting the occluded pixels (80% true positives, 12%
false positives) and assigning correct disparities in these
locations (results were similar in RDS with an
uncrossed disparity of the central square). As shown in
Figure 13C, mean model estimates of the disparity of
the central square corresponded to the predicted ones.

Illusory occluder stimuli

The test battery contained three examples of images in
which the presence of monocular regions gave rise to
illusory occluding surfaces. As expected, for the stimulus
of Tsirlin et al. (2010) (see Figure 14, top), the initial
estimates of the energy model for the textured areas were

Figure 16. Model results for the monocular intrusion (top) and the monocular gap (bottom) stimuli. (A) Stimulus. (B) Results for

occlusion width 25px for the intrusion stimulus and 12px for the gap stimulus. (C) Results for three different occlusion widths. The

stereograms are arranged for crossed fusion.
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accurate, but the estimates for the central blank region
were noisy and did not correspond to the percept of an
illusory occluder. The model improved on these results
by detecting the monocularly occluded region (71% true
positives, 30% false positives) and propagating crossed
disparity across the blank region, reconstructing the
illusory occluder. Figure 14C shows that the disparity
estimates for the illusory occluder increased as the
occlusion width increased, and the estimates lie on the
predicted line. These data are in agreement with the
psychophysical data reported in Tsirlin et al. (2010) and
shown in Figure 15A. As in the model results, in the
psychophysical data, there is an increase in disparity
estimates with an increase in occlusion width, and the
estimates follow the prediction closely.

The model also performed quite well with the
nontextured illusory occluder stimuli from Gillam and
Nakayama (1999) and Liu, Stevenson, and Schor
(1994) as shown in Figure 14 middle and bottom rows,
respectively. The monocularly occluded areas were
detected accurately (95% true positives, 8% false
positives for both), and the illusory surfaces were fully
reconstructed although the initial estimates of disparity
from the energy model fell short of the ground truth.
As in the psychophysical data (Gillam & Nakayama,
1999; Liu et al., 1994; Tsirlin et al., 2011), the model
predicted quantitative depth in both cases as shown in
Figure 14C. Moreover, the model estimations repli-
cated both the qualitative and the quantitative aspects
of observer data. This can be appreciated by comparing
the model data to the psychophysical data from Tsirlin
et al. (2011), Liu et al. (1994), and Gillam and
Nakayama (1999) shown in Figure 15A through 15C.
As can be seen in the figure, for the Liu et al. stimulus,
observers’ estimates were closer to the predicted
disparity values (particularly in the Liu et al. data) than
for the Gillam and Nakayama stimulus, in which
disparity was overestimated in agreement with the
model’s performance. This difference is likely the result
of a disparity signal present in the corners of the Liu et
al. stimulus as was discussed by Gillam (1995) and as
can be seen in the initial disparity map (the small dark
patches in the corners of the figure). This information
helps the model assign a more precise disparity estimate
to the illusory surface. There were minor artifacts in
which disparity was propagated beyond the illusory
surface. These most likely resulted from stray pixels
being identified as occluded.

Monocular intrusion and monocular gap

The results for the monocular intrusion stimulus
(Cook & Gillam, 2004) are shown in Figure 16 (top).
The initial estimate of the energy model showed a small
curved surface on the edge of the figure eight with

crossed disparity along the curviest points of the figure
eight and a disparity close to zero at the midline of the
figure eight. This is consistent with a one-to-one
matching of the curved contour in one eye to the
straight contour in the other eye as proposed by Tsirlin,
Allison, et al. (2012) and Tsirlin, Wilcox, et al. (2012).
However, the disparity map was noisy and did not
extend to the right of the figure eight (creating an
occluding surface) as it does phenomenologically when
the figure is viewed stereoscopically. The model
detected the narrow contour of the side of the figure
eight as occluded but not the whole intrusion (true
positives 54%, false positives 20%). This occurred
because the match goodness of the inside area of the
occlusion was quite good, and so it was not signaled as
occluded. The curvature of the surface was preserved;
however, the top and bottom parts of the occluder had
lower disparities than those in the ground truth
(partially due to the initial lower estimates given by the
energy neurons). Disparity was correctly propagated
toward the right of the image, reconstructing an
illusory intrusion. Model estimates for this stimulus
were lower than the observer estimates shown in Figure
15D. However, the model correctly predicted the
increase in perceived depth with increasing intrusion
width as shown in Figure 15C (figure shows the
maximum disparity value within the region of interest).

The results for the monocular gap stimulus (Gillam,
Blackburn, & Nakayama, 1999) are shown in Figure 16
(bottom). Here the model correctly detected the
occluded area; however, its width was overestimated
(93% true positives, 66% false positives), which resulted
in larger disparity estimates for the side to the right of
the gap. The estimated disparity also did not decrease
with eccentricity toward the zero disparity right edge as
it did in the ground truth. This might be an artifact of
the method of final disparity selection employed in the
model. Only the disparity that generates the maximum
response is chosen as the true disparity of each pixel
while two or more similar peaks might exist in a
disparity profile. In fact, as closer examination showed,
the disparity profiles in the region of interest of the
monocular gap stimulus did show two peaks similar in
magnitude. Thus, a method of final disparity selection
that takes all peaks into consideration might produce
the gradual change in disparity shown in the ground
truth map. The psychophysical data (estimations of the
disparity around the edges of the gap) for this stimulus
is shown in Figure 15E. Comparing this figure with
Figure 16C, bottom, it can be seen that the model
correctly predicted the increase in disparity with
increase in occlusion width; however, as discussed
above, model-predicted disparities were overestimated.
The overestimation in the model strictly depended on
the threshold used in the match-goodness occlusion
detection metric. The red line in Figure 16C shows that
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when the threshold h1 (see Equation 6) was increased to
0.5, with all other parameters held constant, the model
disparity estimates were much closer to the psycho-
physics data and the predicted disparity.

Two-object arrangements

The results for the three types of two-object
arrangements with a bar (Nakayama & Shimojo, 1990)
with a disc (Gillam et al., 2003; Tsirlin, Wilcox, et al.,
2012) and a camouflage arrangement (Nakayama &
Shimojo, 1990) are shown in Figure 17, top, middle,
and bottom, respectively. In the case of the occlusion
arrangement with the bar, the initial disparity map
provided a fairly accurate estimate of disparity albeit
encompassing an area larger than that of the bar. These
estimates are based on double matching of the bar to
the binocular rectangle (the uniqueness constraint is
not imposed at the initial stage of the model). The
monocularly occluded area detected by the model was
narrower than the bar (45% true positives, 1% false
positives). This occurred because the right edge of the
bar has high match goodness (due to double matching),
so the goodness-of-match occlusion-detection metric
failed to signal these parts as occluded. The model

correctly predicted an increase in quantitative depth as
the occlusion width increased as shown in Figure 17C.
Importantly, these disparity estimates were lower than
predicted, a result that mirrors psychophysical data
provided in Tsirlin, Wilcox, et al. (2012) and shown in
Figure 15A (red line with triangular marks).

In the case of the disc stimulus, the outline of the disc
is shown in red on all the maps to highlight that, on the
initial depth map, the pocket of uncrossed disparity
was located beyond the contours of the disc. However,
in the final depth map, the disc was localized correctly.
The occluded area was detected accurately in this case
(100% true positives, 30% false positives) although it is
overestimated somewhat, most likely due to the
relatively low spatial resolution of the energy neurons
in comparison to the small size of the disc. Figure 17C
shows that the model disparity estimates increased as
occlusion width increased. Importantly, disparity was
underestimated quite substantially just as in the
psychophysical data reported in Tsirlin, Wilcox, et al.
(2012) and shown in Figure 15F (blue line with square
marks). Note that, similarly to the psychophysical data
(Figure 15F), the underestimation in the disc stimulus is
larger than that in the bar stimulus. The disparity
underestimation, in both the bar and the disc stimuli, is
likely the result of two aspects of the model: (a) the
monocular region detected by the model in these

Figure 17. Model results for a two-object arrangement in occlusion configuration with a bar (top) and a disc (middle) and in a

camouflage arrangement with a bar (bottom). (A) Stimulus. (B) Results for occlusion width 28 (bar) and 20 (disc). (C) Mean disparity

for the region of interest (monocular object) for three different occlusion widths. The stereograms are arranged for crossed fusion.

Journal of Vision (2014) 14(7):5, 1–26 Tsirlin, Wilcox, & Allison 20

Downloaded from jov.arvojournals.org on 01/14/2021



stimuli is restricted to the monocular object rather than
the whole region between the occluder and the
monocular object’s outer edge, and (b) the averaging of
the disparity estimates provided by the occlusion
neurons and the binocular neurons in the computation
of the disparity of the region of interest. The former
issue is discussed in detail in the Discussion section.

The model also replicated psychophysical results
obtained with camouflage arrangements shown in
Figure 15A (red line with round markers). As can be
seen in the figure, very little depth is perceived in this
case, and there is little change in perceived depth with
increase in occlusion width (Gillam et al., 2003;
Nakayama & Shimojo, 1990; Tsirlin, Wilcox, et al.,
2012). Column C of the bottom row of Figure 17 shows
the mean disparity estimates for the monocular bar in a
camouflage arrangement as computed by the model for
different occlusion widths. The model estimates were
very small compared to the theoretical depth and
changed very little as a function of occlusion width.
This occurs because the model makes the assumption
that all monocular regions result from occlusion
relationships. Thus, because the model detected the left
side of the bar as monocular, an occluding edge was
assumed to exist to the right of the monocular region.
But the reliability of the area to the right of the
monocular region was low due to double matching, and
thus the model reconstructed an illusory occluding edge
instead. As a result, the area within the boundaries of
the bar (outlined in red in Figure 18) has a disparity
close to zero, and the area to the right of the bar has a
crossed disparity. This treatment of camouflage as
occlusion is consistent with the mechanisms proposed
by Tsirlin, Wilcox, et al. (2012) and to some degree by
Assee and Qian (2007) to account for the absence of
depth in camouflage arrangements.

We have also assessed whether the DMOG model
can predict the decrease in perceived depth in two-

object (occlusion) arrangements after occlusion width
increases beyond a certain value (Nakayama &
Shimojo, 1990). We hypothesized that this decrease is
related to the size-disparity correlation. That is, stimuli
of a given width can only support depth from disparity
and occlusion over a specific range. In our version of
the energy model, all disparities are represented at all
scales due to the use of position-shift mechanisms. To
test our hypothesis in the simplest way, we have
modified the model to have a disparity range of 624 px
and an occlusion width range of 24 px and ran the
model with two-object arrangements with a bar with
occlusion widths of 18, 20, 24, 28, 32, and 36 px. The
mean disparity estimates of the model for the
monocular bar are shown in Figure 18. Model results
had the same pattern as the psychophysical data in
Nakayama and Shimojo (1990). At first, as occlusion
width increased, the estimates increased as well until
the maximum disparity/width represented by the
population (24 px) was reached. Then, the function
plateaued and eventually decreased.

Discussion

We have described a biologically plausible model of
depth from disparity and monocular occlusion. This
model is based on the DMOG theory—a set of
principles derived from the psychophysical and com-
putational studies of stereopsis and da Vinci stereopsis.
In the DMOG model, monocular occlusions are
detected explicitly and are directly used in the
construction of 3-D surfaces. Depth in occluded areas
is established on the basis of monocular geometry, and
illusory occluding surfaces are constructed in cases in
which the disparity estimates for the occluding edge
have low reliability.

The proposed model offers several improvements
over the existing biologically inspired models of depth
from disparity and occlusion. First, the DMOG model
was implemented in a biologically plausible way with a
distributed representation of neuronal firing rates
throughout the computation until the final selection of
disparities is performed. Second, this is the first model
to use the occlusion width explicitly to compute
equivalent disparity in occluded areas and to proac-
tively propagate the disparity from the occluded areas
into areas of low reliability. This feature allows the
model to reconstruct illusory occluders and predict
depth percepts in monocular gap and monocular
intrusion stimuli. Third, the model was tested on a large
range of different image types, which allowed an in-
depth evaluation of the model’s architecture.

The DMOG model performed well on most of the
test set, improving upon the initial maps provided by

Figure 18. Mean disparity estimates for the bar stimulus

computed by the model using the limited disparity range.
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the disparity energy model. Importantly, in the
majority of cases, it also produced disparity maps that
were close to observers’ percepts as reported in the
psychophysical literature. It also replicated quantitative
depth percepts from monocular occlusions for all
stimuli in which quantitative depth has been demon-
strated psychophysically. This suggests that the pro-
posed neuronal architecture could underlie da Vinci
stereopsis.

Model predictions

The DMOG model proposes that there are monoc-
ular occlusion detectors and neurons tuned to occlusion
width in the visual cortex. This prediction could be
tested via single-cell recordings using stimuli such as
dense RDS with monocular regions. However, care has
to be taken to distinguish between neurons sensitive to
any uncorrelated stimuli (Poggio, Gonzalez, & Krause,
1988) (which are most likely involved in the detection
of false matches) and those responding specifically to
monocular occlusions.

The model also makes interesting predictions that
can be tested using psychophysical methods. First, an
intriguing issue arises from simulations with two-object
arrangements. Theoretically, in these stimuli, the
occluded area is not restricted only to the occluded
object (bar or disc), but includes the space between the
monocular object and the occluder. The DMOG
model, in its current form, does not identify the
complete textureless space between the occluded object
and the occluder as occluded because its goodness of
match is quite high. This results in an underestimation
of the model depth estimates as seen in Figure 17. This
aspect of the model might be considered a drawback;
however, note that it is not clear from the psycho-
physical literature what area is detected as occluded by
the visual system. Moreover, the underestimation of
depth produced by the model is very similar to the
underestimation of perceived depth in psychophysical
experiments (Tsirlin, Wilcox, et al., 2012), suggesting
that the visual system also labels only the monocular
object as occluded. If that is indeed true, two
predictions can be made about depth perception in
two-object arrangements: (a) larger monocular bar
widths will yield larger perceived depth even when the
overall size of the monocular region remains the same,
and (b) placing the two-object arrangement on a
textured background should allow the identification of
the complete monocular region as occluded, which will
result in more accurate depth estimates.

According to the DMOG theory and model,
disparity from monocular areas propagates into
binocular areas when those have low reliability.
Reliability is low when more than one match produces

a high response from the population of energy
neurons. This occurs in textureless areas such as the
ones in several stimuli used in the evaluation of the
DMOG model. It can also occur in areas with
repeating texture (wallpaper patterns) because each
element can be matched successfully to several others
in the other eye. Thus, the model predicts that when a
monocular region neighbors an area with a repeating
pattern, the disparity computed for the monocular
region can propagate into the binocular region. In fact,
this is exactly what Hakkinen and Nyman (2001)
found. In their experiments, they superimposed the
Gillam and Nakayama (1999) stimulus (see Figure 2C)
or a modified Kaniza figure, in which depth was
perceived on the basis of occlusions, on top of a
repetitive dot pattern. They found that the dots were
‘‘captured’’ by the depth signal provided by monocular
occlusions.

Finally, the model predicts that a single object (e.g.,
a dot) presented to one eye only while the other eye
views a uniform field would elicit a percept of depth
through the creation of an illusory occluding edge. In
fact, there is some evidence that stimuli of this type
create qualitative depth percepts (Kaye, 1977; Wilcox,
Harris, & McKee, 2007), named monoptic depth. Kaye
and Wilcox et al. showed that, when one eye views a
uniform field while another sees a small object
positioned in this field, a percept of depth arises that
depends on the position of the target with respect to
fixation. Although our model does not incorporate a
fixation (or viewing direction) constraint, it could be
introduced in a form of adjustment of relative
disparities with respect to an assumed fixation position.
The model also predicts that the perceived depth in
such stimuli would increase with the increase in the size
of the monocular objects. This aspect of monoptic
depth remains to be explored.

Future improvements

Several changes could be made to the model to
improve its performance and to account for other
psychophysical phenomena. Tsirlin et al. (2011) found
that a binocular object placed next to an illusory
occluding surface can bias the perceived depth of this
surface. The DMOG model, in its current form,
cannot account for this phenomenon because disparity
signals do not spread beyond object boundaries in
binocular areas. This constraint can be relaxed by
allowing some support to propagate beyond object
boundaries into neighboring regions with low reli-
ability. Second, in its present form, the disparity maps
in the model are computed as if the scene were
observed from the point of view of one of the physical
eyes. This is the convention for most algorithms and
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models of stereopsis; however, it contrasts with the
popular notion of seeing the world from the cyclopean
eye positioned in between the two physical eyes
(Erkelens, Muijs, & van Ee, 1996; Ono, Wade, &
Lillakas, 2002). In the future, this issue needs to be
considered, taking into account the literature that
explores the perceived visual direction near depth
discontinuities (Erkelens et al., 1996; Ono, Lillakas,
Grove, & Suzuki, 2003; Ono et al., 2002). Finally, the
output of the complete model critically depends on the
initial disparity estimation step. Improving the per-
formance of the energy model will improve the
performance of the complete model. One possibility
could be to incorporate constraints on matching, such
as smoothness and uniqueness, at the initial disparity
computation stage.

Conclusions

We have proposed a unified theory of the underlying
mechanisms of da Vinci stereopsis grounded in
psychophysical and computational data. Based on this
theory, we have constructed a computational model,
which has been tested on a large battery of images,
including dense natural scenes and several types of
stimuli used to study monocular occlusions. These
simulations show that the model is capable of
producing results similar to those reported in the
psychophysical literature for the majority of test cases.
This suggests that the proposed neural architecture can
underlay da Vinci stereopsis and serve as an integral
part of binocular depth perception.

Keywords: monocular occlusions, binocular half-oc-
clusions, stereopsis, energy model, computational model,
depth perception, binocular vision
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Footnote

1A similar metric called ‘‘match goodness jumps’’ is
used in several computer vision algorithms (Egnal &
Wildes, 2002). However, the ‘‘match goodness jumps’’
metric provides only the contours of the occluded
regions, and our method detects complete occluded
regions.
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Appendix A

Symbol Description

fL and fR The left and the right RFs of a simple energy neuron

I The image patch that falls on the RFs of the simple neurons

Gauss The Gaussian function of the simple neuron RF

Sin The sinusoid of the simple neuron RF

uL and uR The left and the right phase shifts of the simple neuron RFs

rx and ry The horizontal and vertical widths of GaussL/R
h The preferred orientation of the simple neuron RF

x0 The peak preferred spatial frequency of the simple neuron RF

C0 Classical complex energy neuron

C Complex energy neuron with a normalized response

Cx,y,d Response of a population of C neurons with RFs at x,y and tuned to disparity d pooled over

scales and orientations

(�dm, dm) The range of disparities to which the complex energy neurons C are tuned

C*
x;y The response Cx,y,d for all disparities (�dm, dm), referred to throughout as the disparity profile

MGx,y Neurons computing the match goodness metric for occlusion detection

M* A neuron computing the maximal response of the whole population of disparity detectors

hxihn=hxi0 Rectification with respect to the threshold hn or 0, respectively

CL*
x;y and CR*

x;y The response of a population of complex neurons C*
x;y with all the left eye/right eye RFs fixed at

location x,y

n(x) A normalization function

Rx,y,d Neurons computing the difference between disparity profiles CL*
x;y and CR*

xþd;y
LRCx,y Neurons computing the left-right match correspondence

OCCx,y Monocular occlusion detectors combining the outputs of LRCx,y and MGx,y

ESx,y,w,s End-stopped neurons, receiving input from OCCx,y neurons with an excitatory center of width w,

which is shifted by s with respect to location x,y

Wx,y,w Neurons computing the likelihood that x,y is located within a monocularly occluded region of

size w

W*
x;y The response of a population of Wx,y,w neurons tuned to different widths, referred to as the

occlusion width profile

cn The weight of inhibitory interneural connections

C*�d
x;y The disparity profile at location x,y with the response to disparity d zeroed

REx,y,d Neurons computing the difference between the maximum response in C*
x;y and the maximum

response in C*�d
x;y

RE*
x;y The response of a population of REx,y,d neurons with different disparities zeroed

RELx,y Neurons computing the reliability of disparity estimates at location x,y

OMGx,y Neurons computing the overall match goodness

DEx,y Disparity edge detectors

LEx,y Luminance edge detectors

EDx,y Combined edge detectors

OBJx,y,x0 ,y0 Neurons signaling whether x,y and x0,y0 belong to the same object

BINx,y,d Neurons computing final disparities for binocular locations

MONx,y,d Neurons computing final disparities for monocularly occluded locations

3Dx,y,d Neurons computing final disparities by combining BINx,y,d and MONx,y,d responses

BSx,y,d Neurons aggregating support from binocular regions around monocularly occluded locations

MSx,y,d Neurons aggregating support from monocular regions around monocularly occluded locations

NL, NA, NB, NR Regions to the left, above, below, and to the right of a monocularly occluded region from where

support is aggregated

H · W The height and the width of the support regions NL, NA, NB, NR

3DRNX,d Summed and weighted response to disparity d in the support region NX

Gaussx,y,r A 2-D Gaussian function centered on x,y with a standard deviation r

PROPxþs,y,d Neurons propagating disparity signals from monocularly occluded locations x,y to binocular

locations x þ s, y

Table 2. Symbols used in the article.
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