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The shape of the illusory surface in stereoscopic
Kanizsa figures is determined by the interpolation of
depth from the luminance edges of adjacent inducing
elements. Despite ambiguity in the position of illusory
boundaries, observers reliably perceive a coherent
three-dimensional (3-D) surface. However, this
ambiguity may contribute additional uncertainty to
the depth percept beyond what is expected from
measurement noise alone. We evaluated the intrinsic
ambiguity of illusory boundaries by using a cue-
combination paradigm to measure the reliability of
depth percepts elicited by stereoscopic illusory
surfaces. We assessed the accuracy and precision of
depth percepts using 3-D Kanizsa figures relative to
luminance-defined surfaces. The location of the
surface peak was defined by illusory boundaries,
luminance-defined edges, or both. Accuracy and
precision were assessed using a depth-discrimination
paradigm. A maximum likelihood linear cue
combination model was used to evaluate the relative
contribution of illusory and luminance-defined signals
to the perceived depth of the combined surface. Our
analysis showed that the standard deviation of depth
estimates was consistent with an optimal cue
combination model, but the points of subjective
equality indicated that observers consistently
underweighted the contribution of illusory
boundaries. This systematic underweighting may
reflect a combination rule that attributes additional
intrinsic ambiguity to the location of the illusory
boundary. Although previous studies show that
illusory and luminance-defined contours share many
perceptual similarities, our model suggests that
ambiguity plays a larger role in the perceptual

representation of illusory contours than of luminance-
defined contours.

Introduction

Illusory contours occur when boundaries are per-
ceived in an image in the absence of a corresponding
luminance gradient. Although illusory contours can be
created under a wide range of conditions, the most
well-known stimuli are those introduced by Kanizsa
(1955). In Kanizsa figures, observers see a complete
square even though the shape is specified only by the
relative position of a set of inducing elements. In Figure
1, the central region of the two-dimensional (2-D)
Kanizsa figure is perceived as being closer to the
observer than the inducing elements and brighter than
the background (Bradley & Dumais, 1984; Coren,
1972; Coren & Porac, 1983). Although lightness
illusions do not always occur with Kanizsa configura-
tions (Day, 1987; Dresp, Lorenceau, & Bonnet, 1990;
N. Kogo, Strecha, Gool, & Wagemans, 2010), when
they do occur, observers typically perceive illusory
contours (He & Ooi, 1998; Prazdny, 1983).

In Kanizsa figures, the perceived depth order derived
from occlusion plays a key role in creating illusory
contours (Coren, 1972; Gillam & Nakayama, 2002;
Kellman & Shipley, 1991; Rubin, 2001). However, in
these 2-D images, depth information is qualitative. The
apparent depth and shape of illusory surfaces are
dramatically enhanced when Kanizsa figures are viewed
stereoscopically (Carman & Welch, 1992; Ramachan-
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dran, 1986; Vreven & Welch, 2001). This is illustrated
in Figure 2 in which the vertical edges of the inducers in
the 3-D Kanizsa figure are rendered with binocular
disparity, consistent with the presence of a curved white
foreground surface.

Three-dimensional Kanizsa figures can be thought of
as examples of disruptive coloration camouflage in
which a large portion of an object’s boundary has the
same luminance as the background (Endler, 2006). To
disambiguate a coherent surface, the visual system must
combine information about the location of these
camouflaged regions from the luminance-defined in-
ducers and interpolated illusory edges. One difference
between luminance-defined and illusory regions is that
the location of the former is clearly defined by a change
in the intensity of the physical stimulus, and the
position of the latter is ambiguous and must be
inferred.

There is considerable evidence that illusory and
luminance-defined contours are integrated and even
processed similarly by the visual system. It has been
shown that illusory boundaries are perceptually similar
to luminance edges in that they (a) share neural
architecture that processes luminance-defined edges
(Larsson et al., 1999; von der Heydt, Peterhans, &
Baumgartner, 1984), (b) share similar perceptual
illusions (Paradiso, Shimojo, & Nakayama, 1989;
Smith & Over, 1979), and (c) exhibit rivalry with
luminance edges (Fahle & Palm, 1991). More specifi-
cally, a number of studies have used 2-D Kanizsa
figures to provide evidence of interaction between
illusory and luminance-defined boundaries. For exam-
ple, the inclusion of an illusory contour can improve
the detectability of luminance-defined contours near
contrast threshold using collinear facilitation (Dresp &
Bonnet, 1995; Wehrhahn & Dresp, 1998). Others have
shown that luminance contours superimposed on
illusory contours can interfere with detection thresh-
olds at suprathreshold contrasts (Dillenburger & Roe,
2010). Interestingly, contours are often completed
irrespective of the stimulus attribute (i.e., luminance,
temporal, or binocular disparity) used to create illusory
contours (Poom, 2001). Clearly, illusory and lumi-
nance-defined regions interact to determine the per-

ceived 3-D shape of illusory figures. The development
of a quantitative model of the integration of illusory
and luminance-defined features provides a compelling
opportunity to evaluate the role of ambiguity in depth
cue combination.

In other domains, researchers have modeled depth
cue integration using Bayesian decision theory (Malo-
ney & Landy, 1989). The combination of depth cues is
commonly modeled as maximum likelihood estimation
(MLE); it is assumed that the noise associated with
each estimate is independent and Gaussian, and all
Bayesian priors are uniform and noninformative
(Landy, Maloney, Johnston, & Young, 1995). In this
case, the combined-cue estimate can be calculated as a
simple average of the single-cue estimates, weighted by
each cue’s reliability, which is the inverse of the cue’s
variance (Cochran, 1937). The MLE approach has
provided a principled framework for modeling the
fusion of multiple depth cues (Hillis, Watt, Landy, &
Banks, 2004). In this approach, optimal cue integration
maximizes reliability (Ernst & Banks, 2002; Landy et
al., 1995). If we have an unbiased depth cue Qi with
variance r2

i and a second, independent and unbiased
depth cue Ql with variance r2

l , then the optimal MLE
depth estimate Q̂c based on these two cues is

Q̂c ¼ wiQi þ wlQl; ð1Þ
where

wi ¼
1=r2

i

1=r2
i þ 1=r2

l

� �

wl ¼
1=r2

l

1=r2
i þ 1=r2

l

� � :
These weights are proportional to the inverse of the
variances of the cue distributions, so greater weight is
placed on the more reliable cue. By combining
information from several depth cues, the visual system
can estimate depth with greater precision than it can by
relying on any single cue (Ernst & Banks, 2002; Knill &
Saunders, 2002; Landy et al., 1995).

Figure 2. A stereo pair of a high-contrast Kanizsa figure. When

cross-fused, the disparity at the inducing edges generates a

percept of a 3-D crossed-disparity illusory surface in the

absence of luminance-defined features in the central region.

Figure 1. A Kanizsa square with four high contrast–inducing

elements.
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Here we use a similar MLE cue-combination
approach to evaluate observers’ ability to combine depth
information from illusory and luminance-defined con-
tours. Usually, MLE cue-combination studies assess the
combination of distinct depth cues, such as texture and
binocular disparity (e.g., Hillis et al., 2004). There is no
evidence that depth is computed separately from illusory
and luminance-defined contours, and in fact, as dis-
cussed above, there is considerable evidence that both
types of contours are processed in the same manner.
However, the optimal cue combination model described
above does not need to be considered a mechanistic
model. As a normative model, it describes the best
possible combination of depth from illusory and
luminance-defined contours, thus providing insight into
the relationship between underlying sources of depth
information that are otherwise difficult to dissociate
within stereoscopic illusory stimuli. We created 3-D
Kanizsa-like surfaces that were defined by both illusory
and luminance contours (i.e., combined surfaces). As
outlined below, we use a normative model to assess each
observer’s performance in the combined surface condi-
tion relative to the best performance we could expect
given their performance in the single-cue conditions.

Experiment 1

The aim of our first experiment was to evaluate the
perceived depth obtained from illusory and luminance-
defined boundaries in stereoscopic curved surfaces to
inform our MLE model. We assessed perceived depth
estimates using variations of 3-D Kanizsa squares. Our
stimulus conditions were designed to measure the depth
defined by (a) illusory boundaries generated by
stereoscopic inducing elements, (b) the luminance-
defined disparity along the surface edge, and (c) a
combined surface comprised of both.

Observers

Seven observers (including authors BH and LW)
participated in the study. Each observer’s stereoacuity
was assessed using the Randote test (Stereo Optical
Co, Inc, Chicago, IL) to ensure that observers could
detect depth from binocular disparities of at least 40
arcseconds. All observers had normal or corrected-to-
normal vision. The same group of observers partici-
pated in both experiments reported here. One observer
was not available to complete testing and was removed
from the final analysis, resulting in a total of six
observers. The experiments were approved by the York
University Office of Research Ethics and followed the
tenets of the Declaration of Helsinki.

Stimuli: Rendering geometry

All Kanizsa figures were rendered as 3-D virtual
objects in OpenGL using perspective projection with an
asymmetric frustum configuration, using the Psy-
chtoolbox package for MATLAB (MathWorks, Na-
tick, MA; Brainard, 1997; Pelli, 1997). We configured
OpenGL’s projection matrix to match the viewing
geometry in our modified Wheatstone mirror stereo-
scope with a viewing distance of 74 cm. To equate the
test disparity for all observers, we set the lateral
separation of the two projection frustums to equal each
observer’s interocular distance (IOD). Each 3-D
Kanizsa figure was created by rendering four fronto-
parallel black circles (0.81 cd/m2), each with a diameter
of 0.88 (1.1 cm) and a 1.78 (2.2 cm) separation between
the centers of adjacent inducers. In stimulus conditions
without illusory contours, the inducers faced outward
(see Figure 4, Stimuli: Surface conditions). Here, the
inducers were shifted diagonally by 1.28 (1.5 cm), so
they abutted the corners of the occluding surface. The
inducers were static with a 908 circular segment
removed from the outermost edge and had zero
disparity relative to the reference plane. The curvature
of the surface edge was defined using a surface template
that represented a half cycle of a sinusoid. The peak
amplitude was calculated from the disparity at the peak
and the observer’s IOD using the conventional formula
(see Howard & Rogers, 2012, pp. 152–154). All stimuli
were rendered using the same curved surface template.
Figure 3 illustrates the viewing geometry for Experi-
ment 1.

Stimuli: Surface conditions

Four stimulus conditions, (a) illusory, (b) low
contrast, (c) combined, and (d) high contrast, were
created for each observer (Figure 4). In the illusory
condition, the luminance of the occluding surface was
the same as the background (in all other conditions,
this value differed). The low-contrast condition con-
sisted of a stereoscopic surface with a low-contrast
luminance value in the central region and rotated
inducing elements. (See Procedure for details of
luminance selection.) The combined condition consist-
ed of a stereoscopic Kanizsa figure in which the central
square and stimuli in the low-contrast condition had
the same luminance. Lastly, the high-contrast control
condition consisted of a black (0.81 cd/m2) luminance-
defined surface with rotated inducing elements. The
surface was filled with black to create high-contrast
edges, which are optimal for good stereoscopic acuity
(McKee, 1983). All stimulus conditions had the same
curvature along the surface edge, but in the illusory
condition, the surface peak was camouflaged with
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respect to the background. Thus, the largest luminance-
defined disparity in the illusory condition was the
relative disparity at the tip of the inducing elements,
and the largest disparity signal in the remaining surface
conditions was at the surface peak.

All stimuli were presented at the center of the display
on a gray background (50.3 cd/m2) with an array of
high-contrast (65.6 cd/m2) outlined circles (radius of
0.218) above and below the central (5.28 310.58) region.
The arrangement of this pattern of circles was
randomized on each trial, so they provided no
consistent position cue but provided a strong fusion
lock and reference plane. The stimulus and fusion field
were presented at a standing uncrossed disparity of
0.428. A circular disparity probe (22.6 cm/m2) with a
diameter of 0.258 was presented 2.18 to the left of the
center of the screen. In preliminary testing, we assessed
multiple lateral offsets (1.08, 1.58, 2.08, and 2.58) and
determined that at displacements of 2.08 or greater
there was no reliable influence of the probe on the
interpolation of the surface.

Apparatus

Stimuli were presented using the Psychtoolbox
package (Brainard, 1997; Pelli, 1997) for MATLAB on
a Mac OS X computer (Apple, Inc, Cupertino, CA). All
stimuli were presented on a modified Wheatstone
mirror stereoscope consisting of two LCD monitors
(Dell U2412M; Dell Inc, Round Rock, TX) with a
viewing distance of 74 cm and a fixed chin rest to

Figure 4. An illustration of the four stimulus conditions. All stereo pairs are arranged for cross-fusion. The feature available to support

a disparity signal is indicated below each stimulus; see text for details.

Figure 3. An illustration of the viewing geometry and stimulus

as seen from the side (without the stereoscope mirrors and

monitors). The reference plane had uncrossed disparity relative

to the screen plane. The black inducers of the 3-D Kanizsa figure

had zero disparity relative to the reference plane. The occluding

surface extended in front of the reference plane, behind the

screen plane, and in the shape of a half sinusoid.
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maintain stable head position during testing. The
monitor resolution was 1,920 3 1,200 pixels with a
refresh rate of 75 Hz. With these dimensions, each pixel
subtended 1.26 arcminutes. Prior to testing, observers’
IOD was measured using a Richter digital pupil
distance meter, and all testing took place in a darkened
room.

Procedure

Previous lightness-matching experiments with Ka-
nizsa figures tend to report contrasts that fall below the
critical contrast range for disparity detection (Legge &
Gu, 1989) with contrast thresholds as low as 1% to 3%
(Li & Guo, 1995). Thus, prior to comparing perceived
depth in the illusory and luminance-defined conditions,
it was necessary to roughly equate perceived contrast in
each condition while ensuring that the disparity of the
low-contrast luminance surface was suprathreshold. To
do so, we capitalized on the fact that reducing the
contrast of a stimulus at a fixed disparity can make it
appear more distant (Fry, Bridgman, & Ellerbrock,
1949; Rohaly & Wilson, 1999; Schor & Howarth,
1986). We used a two-interval, forced choice (2IFC)
depth-discrimination paradigm in which observers
compared the perceived depth of an illusory and
luminance-defined surface with equivalent relative
disparity along the inducing edge. The intensity of the
luminance-defined surface was varied to find a lumi-
nance value at which the perceived depth of the illusory
and luminance-defined peaks was roughly equivalent
for each observer.

In all experiments, observers were asked to judge the
perceived depth at the peak of the curved surface. To do
so, we used a task in which observers judged the relative
depth of the peak of the surface and a probe of known
disparity. This reference is necessary given that the edges
of the 3-D Kanizsa figure are illusory and, therefore,
make disparity estimation more difficult. The point of
subjective equality (PSE) for each stimulus was measured
using a depth-discrimination paradigm. In disparity-
probe procedures, the depth estimate of the test object is
obtained by comparing the relative depth between the
probe and test object. However, it is important to note
that the task can also be completed implicitly by
comparing the relative disparity of the probe and test
object (Howard & Rogers, 2012). Therefore, in this
paradigm, the PSEs represent the disparity at which the
probe and surface peak are perceived as equivalent. To
evaluate accuracy, the observed PSEs were compared to
the relative disparity of the template used to generate the
stimuli for each condition.

On each trial, observers initially fixated a Nonius
cross at the center of the screen and aligned the vertical
contours of the cross to fixate on the zero-disparity

reference plane. Once the cross was aligned, observers
pressed a game-pad button to display the stimulus for
320 ms. This viewing time ensured that there was
sufficient time for the illusory surface to form (approx-
imately 140 to 200 ms; see I. Kogo, Liinasuo, &
Rovamo, 1993; Reynolds, 1981; Ringach & Shapley,
1996) while restricting the amount of time observers had
to complete a vergence eye movement. Although
observers are capable of initiating vergence within 160 to
200 ms (Tulunay-Keesey & Jones, 1976; Westheimer &
Mitchell, 1969; Yang, Bucci, & Kapoula, 2002), the time
to complete a vergence eye movement can be upward of
800 ms (Rashbass & Westheimer, 1961). On all trials,
observers were asked to indicate whether the disparity
probe was located in front of or behind the peak of the
surface using a game pad. Prior to each test session,
observers performed a brief practice session of five trials
per disparity so that we could choose an appropriate
step size. For each stimulus, the disparity probe was
presented at nine disparity levels. The four stimulus
conditions were tested in separate blocks with blocks
shown in random order. Stimuli were presented in
random order 30 times each for a total of 270 trials per
condition. The probe ranged in disparity from 0.068 to
0.178. Observers made depth judgments for each surface
condition over a range of disparities, the largest of which
was well below the diplopia threshold. The inducer
disparity (i.e., the disparity at the tip of the inducing
element) of the reference stimulus was fixed at 0.098. For
the luminance-defined surface conditions, inducer dis-
parity refers to the disparity at the same position along
the vertical contour as the tip of the inducer.

We used a maximum likelihood method to fit a
normal cumulative distribution function to the empir-
ical psychometric function, and the PSE was computed
as the 50% response point for each test condition for all
observers (n¼ 6). The analysis was performed using R
statistical software and bootstrapped 95% confidence
intervals (CIs) were calculated using Monte Carlo
simulation methods run 1,000 times for each data set
(Wichmann & Hill, 2001a; Wichmann & Hill, 2001b).

Results

Figure 5 shows the PSE estimates for each observer in
each of the four stimulus conditions. To assess the
differences in PSE, a repeated-measures ANOVA
examined the effect of stimulus condition on the mean
PSE. The analysis revealed a significant difference in
mean PSE across the four surface conditions, F(3, 15)¼
123.05, p , 0.001, g2¼ 0.95. The differences in the PSE
between stimulus conditions were examined using
pairwise t tests with Benjamini and Hochberg’s (1995)
correction for false discovery rate. For all observers, the
estimated disparity of the low- and high-contrast peaks
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was similar, and estimates of the illusory and combined
surface peaks were shifted downward. Pairwise t tests on
the means confirmed that the difference between the
illusory (PSEI¼ 0.0878, SE¼60.002), low-contrast
(PSELC¼ 0.1238, SE¼60.001), and combined (PSEC¼
0.1078, SE¼60.002) surface conditions were all
significant (p , 0.01). There was no significant difference
in perceived depth between the low- and high-contrast
(PSEHC¼ 0.1268, SE¼60.001) luminance-defined
surfaces (p¼ 0.17). Importantly, the PSEs obtained
using the high- and low-contrast surfaces closely
matched the disparity at the peak of the surface template
for all observers. This confirms that observers could
accurately localize the peak of these surfaces and that
the disparity probe did not introduce a bias.1 On
average, PSEs were lower when the surface was illusory
than in the low-contrast condition (p , 0.001). This
indicates that the trajectory of the interpolated surface
was shallower for these illusory surfaces than in the
surface template used to create the stimulus. In the
combined condition, the peak was consistently localized
as lying between the illusory and low-contrast surface
peaks (p , 0.001 and p¼ 0.001, respectively). Thus,
when the surface was defined by luminance edges that
occluded the inducing elements, the presence of the
inducers consistently reduced the perceived depth at the
peak of the surface. This occurred even though, when
presented on its own, the luminance-defined signal was
consistently matched to a larger disparity.

Discussion

Illusory surface interpolation

Experiment 1 showed that the perceived disparity at
the peak of the curvilinear illusory surface was

consistently shallower than specified by the sinusoidal
template used to generate the stimuli. A comparison of
the PSEs in the illusory condition to the relative
disparity at the tip of the inducing elements revealed that
on average the perceived peak of the surface (0.098, SE¼
60.002) was approximately the same as the disparity at
the tip of the inducing edge. In this respect, the
interpolation seen here is consistent with studies of
surface structure (Anderson, 2003) and disparity inter-
polation (Mitchison & McKee, 1987) that show, when a
disparity signal is interpolated across an ambiguous
region, the interpolated disparity tends to be equivalent
to the disparity of the nearest unambiguous element.
This pattern of results is consistent with observers simply
matching the disparity of the inducer tips rather than
relying on the perceived depth of the interpolated
surface. However, if this were the case, then the tips of
the inducers should appear to bend toward the observer
in depth. Instead, inspection of the stimuli reveals that
the disparity signal at the inducer tip appears to be
assigned to the illusory surface while the inducer itself
appears almost fronto-parallel (Figure 4). To determine
if this impression was shared by observers, in a follow-
up study we evaluated the perceived depth of the inducer
tips and illusory surface boundary. If observers explicitly
relied on the depth of the inducer tips in the preceding
experiment, then we would predict that the perceived
offset in depth (depth magnitude) of these two regions
would be the same; furthermore, they should show the
same dependence on disparity. Here we asked observers
to estimate the perceived depth in the region of the tip of
one of the inducing elements. On half the trials, they
were told to indicate the depth of the high-contrast
inducer tip, and on the remaining trials, they were asked
to base their judgments on the perceived depth of the
adjacent (illusory) surface at that location. The trial type
was randomized and indicated by displaying the word
‘‘tip’’ or ‘‘surface’’ prior to the stimulus presentation.
Observers had unlimited time to make their responses
and indicated depth magnitude using a custom-built
(and previously validated) haptic sensor strip (see Deas
& Wilcox, 2014; Hartle & Wilcox, 2016). We tested four
observers using three inducer tip disparities (08, 0.048,
and 0.098).

We found that observers reported significantly more
depth when asked to report the depth of the illusory
surface (Figure 6); furthermore, these estimates in-
creased significantly as a function of disparity. How-
ever, estimates explicitly based on the inducer tip
showed no such dependence. Although the inducer
depth estimates appear to increase from zero disparity,
the fact that observers indicated when they perceived
zero depth removed the uncertainty in depth estimates
at zero disparity that is caused by variability in finger
placement at the low end of the scale. The inclusion of
this variability causes a bias toward overestimation of

Figure 5. PSEs for all observers (n ¼ 6) in each of the four

stimulus conditions: illusory (blue), low-contrast (gray), com-

bined (red), and high-contrast (black). Error bars represent 95%

CI.
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depth at zero disparity regardless of the stimulus.
However, in this analysis, the pairwise t test confirmed
the increase from zero to the first test disparity for
inducer depth estimates is not significant (p¼0.05) even
with the variability at zero disparity excluded. Overall,
these results confirm that observers can and do report
the depth at the peak of the illusory surface separately
from the depth at the inducer edge. These results are
also consistent with the well-known boundary owner-
ship phenomenon reported in figure–ground literature
(Anderson, 2003; Anderson, Singh, & Fleming, 2002),
whereby the depth from disparity can disambiguate
boundary ownership along the contour by assigning the
depth to one side of the contour or the other but not
both (Anderson & Julesz, 1995).

Combined surface

In the combined condition, the introduction of a
luminance-defined disparity signal at the boundary of
the Kanizsa figure caused the perceived location of the
peak to become shallower compared to luminance-
defined surface peak. Given that the relative disparity
along the surface edge was equivalent in the combined
and low-contrast conditions, this result seems coun-
terintuitive. Experiment 1 provided perceived depth
estimates for illusory contours Qi, luminance-defined
contours Ql, and the combined cue condition Qc. The
goal of Experiment 2 was to estimate the variance
associated with these perceived depth estimates. The
variance associated with the combined MLE estimate is

r̂2
c ¼

r2
i r

2
l

r2
i þ r2

l

: ð2Þ

Given that the presence of inducing elements strongly
affected the location of the surface peak (despite a
suprathreshold luminance-defined disparity signal and
higher contrast at the corners of the surface), the local
shape information at the inducers could have strongly
influenced the perceived location of the surface peak
because the shape information provided by the inducers
was more reliable than the disparity-defined peak of the
low-contrast luminance edge. If true, we would expect to
find that depth judgments are more precise for the illusory
surface than for the low-contrast, luminance-defined
surface. We evaluate this prediction in Experiment 2.

Experiment 2

To estimate the variance of perceived depth esti-
mates for the surface conditions in Experiment 1, we
used a 2IFC depth-discrimination task. This paradigm
avoids the influence of the probe used in Experiment 1
on the variance of depth estimates by comparing two
stereoscopic surfaces directly. Thus, the reliability
estimate for each surface condition from Experiment 2
represents only the variance of perceived depth
estimates of each surface condition.

Observers

The observers in Experiment 1 also participated in
this study. One observer was removed from the final
analysis because he or she performed at chance in the
low-contrast condition, resulting in a total of six
observers.

Stimuli

The four stimulus conditions tested here used the
same stimuli described in Experiment 1. All stimuli
were presented along with the fusion pattern and
Nonius cross described in Experiment 1. The inducer
disparity values (i.e., disparity at the tip of the inducers)
used in each condition were sampled symmetrically
around the reference disparity of 0.098. The range of
disparities was the same for all observers. The figures
were presented with one of nine crossed inducer
disparities (step size of 0.028).

Procedure

The just noticeable difference (JND) for each
stimulus condition was measured using a 2IFC
paradigm and the method of constant stimuli. The

Figure 6. Mean depth estimates (n ¼ 4) for the inducer (black

triangle) and the surface (blue squares) at the tip of the

inducing element. Error bars represent 1 SEM.
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reference stimulus was randomly presented in the first
or second interval, and the test stimulus was
presented in the other interval. The reference stimulus
had an inducer disparity of 0.098 and was always the
same surface condition as used for the test stimulus.
Each stimulus was viewed for 320 ms, separated by a
750 ms interstimulus interval during which the
observers viewed a Nonius cross. On each trial,
observers were asked to indicate which of the two
intervals contained the surface with more depth
between the plane with the inducing elements and the
peak of the surface. Prior to each test session,
observers completed four trials per test disparity to
familiarize themselves with the stimuli and task. The
four stimulus conditions were assessed in separate
blocks, and in each block the nine test disparities were
randomly presented 30 times each for a total of 270
trials per condition. Condition order was randomized
across observers, and observers had a short break
between each block of trials. To estimate the variance
for each condition, the empirical psychometric
function was fit using a normal cumulative distribu-
tion function using MLE, and bootstrapped 95% CI
were calculated using Monte Carlo methods (Wich-
mann & Hill, 2001a; Wichmann & Hill, 2001b).

Results and discussion

The JND was computed for each condition for all
observers. JNDs represent 1 SD of the fitted cumulative
Gaussian function divided by

ffiffiffi
2
p

to account for the 2IFC
procedure (Green & Swets, 1974). Figure 7 shows the
JND estimates for each observer in each of the four
stimulus conditions. Observers made relatively precise
estimates of the depth at the surface peak for all stimuli.

The repeated-measures ANOVA (which was the
same as described in Experiment 1) revealed a
significant difference in the mean JNDs between
stimulus conditions, F(3, 15)¼ 18.22, p , 0.001, g2 ¼
0.53. Thus, as predicted, precision varied across the
four surface conditions. Pairwise t tests showed that
despite the absence of luminance-defined boundaries or
features in the illusory surface, mean estimates were
equally precise in the illusory (JNDI ¼ 0.0148, SE¼
60.0028) and high-contrast (JNDHC ¼ 0.0138, SE ¼
60.0018) surface (p¼ 0.63) conditions. Importantly, the
average precision was poorer in the low-contrast
surface condition (JNDLC¼ 0.0258, SE¼60.0038) than
in any other condition (p ¼ 0.01); thus, the perceived
depth of the low-contrast luminance-defined surface
was less reliable than the depth of an illusory surface
with the same dimensions. The reliability of the mean
estimates in the illusory and combined (JNDC¼ 0.0148,
SE¼60.0028) conditions was similar (p¼ 0.73),
suggesting that the presence of the inducers improved

the precision of depth estimates, bringing them to a
level similar to that of a salient, high-contrast,
luminance-defined surface.

General discussion

In Experiment 1, a disparity-probe paradigm was
used to measure perceived depth for stereoscopic
illusory, luminance, and combined surfaces. To evalu-
ate the precision of these estimates, in Experiment 2
observers compared the shape of two stereoscopic
surfaces using a depth-discrimination task. Taken
together, these experiments suggest that the illusory
surface supports more reliable depth estimation than
the luminance-defined surface and that the presence of
inducing elements has a strong influence on the depth
of the combined surface peak. In the following section,
these data were used to examine the combination of
illusory and luminance-defined contours using the
MLE cue-combination model given by Equation 1.

As outlined earlier, the illusory and luminance-
defined depth estimates in our MLE model are the
PSEs from the depth-discrimination task in Experiment
1, and the standard deviation (r) of the estimates are
the JNDs measured in the 2IFC task in Experiment 2.
The linear model in Equation 1 was used to predict
PSEs and JNDs in the combined condition (PSEc and
rc, respectively) for each observer who had full data
sets from both Experiments 1 and 2 (n ¼ 5). To assess
whether the observed PSEc and rc estimates were
consistent with MLE model predictions, we compared
the 95% CI of the observed and predicted PSEc and rc

for each observer (Figure 8). The results revealed that
the rc of observed depth estimates were consistently

Figure 7. JNDs for each observer in each condition: illusory

(blue), low-contrast (gray), combined (red), and high-contrast

(black). Error bars represent 95% CI.
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within the 95% CI of the MLE predictions for all five
observers. However, comparison of the 95% CI for the
PSEc showed that the observed PSEs were much higher
than the predicted PSEs for all observers.

Although the observed rc are consistent with theMLE
model predictions, the observed PSEs show a systematic
bias; depth from the illusory surface is consistently
underweighted, resulting in a combined estimate that is
larger than MLE predictions. Observers underweight the
depth estimate from illusory boundaries despite the
considerable influence of the illusory boundary on the
location of the surface peak in Experiment 1. Given that
the results of Experiment 2 showed that the depth from
illusory boundaries was more reliable than the depth
from low-contrast luminance-defined edges, the MLE
model predicts that when estimating the depth of the
combined surface observers should assign even more
weight to the illusory boundaries.

A model of ambiguous depth cues

Why do observers underweight depth estimates from
illusory contours? One possibility is that illusory
contours are especially ambiguous depth cues. Two
sources of ambiguity are (a) noise in the measurements
of the visual system (e.g., internal errors in estimating
disparity; see Cormack, Landers, & Ramakrishnan,
1997) and (b) many-to-one relationships between
properties of the external environment and retinal
images. Although noise contaminates depth estimates
from both illusory and luminance-defined contours, the
many-to-one relationship may have a much greater
impact on illusory contours. As outlined in the
Introduction, in these Kanizsa figures illusory contours
are the visual system’s attempt to perceive partly
camouflaged surfaces. Images of camouflaged surfaces
are ambiguous because hidden sections of the surface
can only be inferred from relatively distant image
features. One consequence of this ambiguity is addi-

tional uncertainty in the location of the camouflaged
surface. In a Kanizsa square, for example, even if the
visual system accurately estimates the 3-D orientations
of the corners of the central square where they partly
occlude the inducers, there is a range of plausible
surface shapes that could connect the corners across the
empty image regions between the inducers.

In this section, we suggest that the classic MLE cue-
combination model fails to account for our findings on
depth perception from illusory contours because it does
not take this kind of ambiguity into account. As outlined
below, it is possible to incorporate ambiguity into classic
cue-combination models, and the resulting model gives a
better account of our findings with illusory contours.

Suppose we have a one-dimensional family I(v) of
images that depict partly camouflaged surfaces. We
assume that the images are ambiguous: An image I(v)
may depict many partly camouflaged surfaces that have
the same visible components but different camouflaged
(i.e., invisible) components.

The observer views a randomly chosen image I(V) and
judges the depth of a point of interest in the camouflaged
region. Here V is a random variable whose value is the
parameter m that picks out the randomly chosen image.
The depth of the point of interest is also a random
variable D. To model the ambiguous information that
each image I(v) provides about D, we assume that D is
conditionally distributed as

PðD ¼ djV ¼ vÞ ¼ /ðd; v; rDÞ: ð3Þ
Here /(x, l, r) is the normal probability density
function, and rD is a parameter that quantifies the depth
ambiguity of the images. Thus, given an image I(v), the
depth of the point of interest follows a normal
distribution with mean v and standard deviation rD.
Equation 3 implies that the image parameter v is not
arbitrary: We have parameterized the family of images
I(v) such that the mean depth of the point of interest over
all partly camouflaged surfaces depicted by the image I(v)
is equal to v. That is, the images are parameterized by the

Figure 8. Observed and predicted PSEs and sigmas for the combined condition for each observer. Error bars represent 95% CI.
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mean depths that they depict at the camouflaged point of
interest.

As in classic cue-combination models, we assume
that the observer views the image I(V) and computes an
unbiased but noisy depth cue X for the point of interest,
given by

X ¼ VþNX: ð4Þ
Here NX is a normally distributed random variable with
mean zero and standard deviation rX. We assume that
V and NX are independent. The observer uses the depth
cue X to estimate the depthD of the point of interest. In
the Appendix, we show that, under the model outlined
here, the probability distribution of the depth cue X
given true depth D ¼ d is closely approximated by

PðX ¼ xjD ¼ dÞ ¼ / x; d; r2
X þ r2

D

� �1=2h i
: ð5Þ

The maximum likelihood depth estimate d̂ is the value
of d that maximizes this expression, so d̂ ¼ x, and the
uncertainty associated with this estimate is

r2
X þ r2

D

� �1=2
. Thus, in a single-cue depth-judgment

task, the observer simply uses the value of the depth cue
X to estimate the depth D of the point of interest. The
ambiguity does not affect the observer’s maximum
likelihood depth estimate or their JND in the single-cue
condition. This means that in a single-cue depth-
discrimination task such as our Experiment 2, we can
use the slope of the psychometric function to estimate
the depth cue noise parameter rX, and this slope is not
affected by the ambiguity parameter rD.

In a multiple-cue depth-judgment task, an observer
who follows the MLE model combines the depth
estimates from individual cues, weighted according to
their reliability. In the Appendix, we show that under the
model outlined here, the reliability of the depth cue X is

rX ¼ r2
X þ r2

D

� ��1
, which is smaller than the reliability

rX ¼ r�2X wewould expect froma classic cue-combination
model that considers only depth cue noise and does not
take depth ambiguity into account. As a result, a
maximum likelihood observer who understands depth-
cue ambiguity will assign a lower weight to an
ambiguous depth cue than we would expect from the
slope of their psychometric function in a single-cue
depth-discrimination task. This is precisely what we
found in our experiments on depth judgments from
illusory and luminance-defined contours (Figure 8).
Thus, despite the presence of ambiguity in the illusory
contour cue in both the single-cue and multiple-cue
depth-judgment tasks, ambiguity only affects the
weights assigned in themultiple-cue condition while the
JND in the single-cue condition remains unaffected.

We estimated the value of the ambiguity parameter
rD for each observer using his or her observed PSE for
the combined surface (Figure 9). The ambiguity
parameter rD for observers BH, LD, LW, MC, and MJ

were 0.012, 0.030, 0.014, 0.048, and 0.022, respectively.
The estimated intrinsic ambiguity due to the ambiguity
of the illusory contour is on average 1.8 times the
observed standard deviation of illusory depth esti-
mates. This estimate seems reasonable given it is within
an order of magnitude of the observed standard
deviation of the perceived depth of the combined
surface for all observers. Thus, very little depth
ambiguity is necessary to account for our findings. In
addition, comparison of the observed standard devia-
tions in Figure 8 to the predicted standard deviations in
Figure 9 shows that the inclusion of intrinsic ambiguity
in the model yields predicted standard deviations that
are within the 95% CI of the observed standard
deviations for four of the five observers. Given that the
inclusion of intrinsic ambiguity produces a combined
estimate that is consistent with our observed estimates,
our results are consistent with the explanation that
observers attribute additional uncertainty to the
position of illusory contours and consequently under-
weight their contribution to perceived depth.

The addition of this intrinsic ambiguity increases the
uncertainty in the location of the illusory surface peak
beyond what is expected from internal noise alone. We
propose that the intrinsic ambiguity is responsible for
the systematic underweighting of the depth from the
illusory surface. Although previous studies have shown
that illusory and luminance-defined contours are
processed similarly (Larsson et al., 1999; von der Heydt
et al., 1984), our results demonstrate that there is a
crucial difference: Illusory contours have additional
intrinsic ambiguity beyond what is expected based on
luminance-defined contours. Despite the shape invari-
ance and consistency of 3-D illusory surfaces generated
from Kanizsa figures (Carman & Welch, 1992), the
visual system accounts for the ambiguity in the position
of illusory contours by reducing their contribution to
the perceived depth of stereoscopic surfaces.

Figure 9. Observed and predicted standard deviations for the

combined condition for each observer. Data labels show the

estimated intrinsic ambiguity for each observer. Error bars

represent 95% CI.
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Correlated error

Given that the illusory and luminance cues share the
high-contrast portion of the surface edge, it is possible
that internal cue estimates were correlated. In the model
of correlated error proposed by Oruç, Maloney, and
Landy (2003), if two cues are correlated with correlation
q, then the optimal choice of weight for a single cue is

w1 ¼
r1 � q

ffiffiffiffiffiffiffiffi
r1r2
p

r1 þ r2 � 2q
ffiffiffiffiffiffiffiffi
r1r2
p ; ð6Þ

where the value of ri ¼ 1
r2
i

is the reliability of each single

cue estimate. This model accounts for a suboptimal
choice of weights by correcting the reliability of each
single cue condition by �q

ffiffiffiffiffiffiffiffi
r1r2
p

. As the correlation q
increases, additional weight is placed on the more
reliable cue. The derivative of Equation 6 with respect
to the correlation q is

dw1

dq
¼ r1 � r2ð Þ ffiffiffiffiffiffiffiffir1r2

p

r1 þ r2 � 2q
ffiffiffiffiffiffiffiffi
r1r2
p� �2 : ð7Þ

When cue 1 is more reliable (r1 . r2), the derivative is
positive, and when cue 2 is more reliable (r1 , r2), the
derivative is negative. Thus, increasing the correlation
q between the two cues always increases the weight
assigned to the more reliable cue. If there were
significant correlation between illusory and luminance-
defined contours, then greater weight would be placed
on the depth from illusory boundaries because it was
significantly more reliable than depth from low-
contrast luminance-defined edges in Experiment 2.
Thus, the presence of a correlation between illusory
and luminance-defined contours cannot account for
the underweighting of illusory boundaries seen in our
data. Importantly, this finding shows that the ambi-
guity model makes predictions in the opposite direc-
tion of a correlation model. Our ambiguity model can
provide researchers with a valuable tool for under-
standing cue-combination behavior that departs from
the predictions of the standard MLE model.

Summary

The aim of this series of experiments was to assess the
combination of perceived depth defined by illusory
boundaries and luminance-defined edges in stereoscopic
curved surfaces using a MLE cue-combination para-
digm. Experiment 1 demonstrated that the addition of
the inducing elements critically impacts estimates of
depth from binocular disparity, and Experiment 2
confirmed our hypothesis that the presence of inducers
forms a more reliable surface percept by increasing the
precision of depth estimates of the surface peak. The

evaluation of the combination of illusory and luminance-
defined stereoscopic surfaces suggests that intrinsic
ambiguity in the position of illusory boundaries influ-
ences observers’ depth estimates when combining this
information with a luminance-defined signal. The
reliability of the position of the illusory surface represents
measurement noise as well as the intrinsic ambiguity in
the position of the camouflaged boundary.

Although our analysis provides a normative MLE
model of the results, it does not rule out the possibility
that surface perception under these conditions involves
more complex processes. For example, our current model
does not consider the contribution of 2-D depth cues
(e.g., occlusion and luminance relationships), which
differed across conditions. The combination of such
quantitative and qualitative depth cues is complex and
poorly understood (Landy et al., 1995). Previous
approaches to this issue have focused on how cues are
combined when they are either consistent or in conflict;
however, it has been shown that in cases of cue conflict
there are large individual differences in the way that cues
are combined (Cavanagh, 1987). For instance, Knill
(2007) showed the weights assigned to stereoscopic and
figural cues to surface slant depend on the level of cue
conflict. He concluded their combination is represented
by a mixture model that allows prior models to differ
between observers depending on their interpretation of
sensory cues. Recently, N. Kogo, Drozdzewska, Zaenen,
Alp, and Wagemans (2014) assessed the perceived depth
of planar Kanizsa figures by varying the structure and
polarity of the inducers and compared the perceived
depth to similar Kanizsa-like figures with inducers that
do not create illusory boundaries. They proposed a
nonlinear dynamic weighting model to describe the
combination of occlusion cues and depth from binocular
disparity in Kanizsa configurations, which suggests
consistent cues may work together to enhance depth
perception of illusory surfaces and reduce the ambiguity
of individual cues. Other studies have suggested that
global geometry (such as the consistency of 2-D and 3-D
curvature) may contribute to the integration of individ-
ual cues beyond a simple weighted linear summation
(Stevens, Lees, & Brookes, 1991). It is possible that such
interactions occurred in our surface configurations but
were not directly evaluated by our cue-combination
methodology.

Conclusions

Our normative model provides a starting point for
further investigation of interactions between depth
from disparity, occlusion features, and luminance
relationships in stereoscopic Kanizsa figures. Our
results suggest that observers combine perceived depth
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from illusory and luminance-defined surfaces according
to a linear combination rule that takes into account
intrinsic ambiguity in the true location of the camou-
flaged boundary. Although illusory and luminance-
defined contours share many perceptual similarities,
our model suggests that the visual system processes the
precision of depth information from these two types of
contours differently. Despite the high precision of
perceived depth estimates for illusory boundaries, the
visual system appears to take into account the intrinsic
ambiguity in the position of illusory boundaries when
combining their depth with depth estimated from
luminance-defined elements.

Keywords: illusory contours, depth perception,
stereopsis, disparity interpolation, cue combination

Acknowledgments

This research was supported by NSERC funding to L.
M. Wilcox and R. F. Murray and an Ontario Graduate
Scholarship to B. Hartle. The authors would also like to
thank James H. Elder for his suggestions regarding the
ambiguity of depth cues from illusory contours.

Commercial relationships: none.
Corresponding author: Brittney Hartle.
Email: brit1317@yorku.ca.
Address: Centre for Vision Research, Lassonde
Building, York University, Toronto, Canada.

Footnote

1 To evaluate whether the contrast polarity (black
inducers on a gray background) was important to the
pattern of results, in a followup study a subset of
observers (n¼ 3) compared the perceived peak of a
high-contrast white surface to the black surface used in
Experiment 1. There was no significant difference in the
PSE of the peaks.
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Appendix

Here we expand on the model of ambiguous depth
cues outlined in the main text. The maximum likelihood
depth estimate d̂, given depth cue X¼x, is the value of d
that maximizes P(X¼x j D¼d). To find this conditional
probability, we start by partitioning over the possible
values of the stimulus image parameter V:

P X ¼ xjD ¼ dð Þ ¼Z ‘

�‘

P X ¼ xjV ¼ v & D ¼ dð ÞP V ¼ vjD ¼ dð Þdv ðA1Þ

We assume that given the image parameter V, the
true depth D of the camouflaged point gives no
additional information about the observer’s depth cue
X (i.e., X is conditionally independent of D, given V):

Z ‘

�‘

P X ¼ xjV ¼ vð ÞP V ¼ vjD ¼ dð Þdv ðA2Þ

Bayes’ theorem gives

¼
Z‘

�‘

P X ¼ xjV ¼ vð ÞP D ¼ djV ¼ vð ÞP V ¼ vð Þ

=PðD ¼ dÞdv: ðA3Þ
Equations 3 and 4 give expressions for these condi-
tional probabilities.

Z‘

�‘

/ x; v;rXð Þ/ d; v;rDð ÞP V ¼ vð Þ

=PðD ¼ dÞdv; ðA4Þ

Z‘

�‘

/ v;x;rXð Þ/ v; d;rDð ÞP V ¼ vð Þ

=PðD ¼ dÞdv: ðA5Þ
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We use the fact that the point-wise product of
normal probability density functions is a scaled normal
probability density function (Bromiley, 2003).

¼
Z‘

�‘

/ x� d; 0; r2
X þ r2

D

� �1=2h i
/ v;l0; r0ð ÞP V ¼ vð Þ

=PðD ¼ dÞdv; ðA6Þ
where l0 ¼ ðr�2X xþ r�2D dÞ=ðr�2X þ r�2D Þ and
r0 ¼ r�2X þ r�2D

� ��1=2
¼ / x; d; r2

X þ r2
D

� �1=2h i

3

Z‘

�‘

/ v; l0;r0ð ÞP V ¼ vð Þ=PðD ¼ dÞdv: ðA7Þ

Equation A7 contains a weighted integral of P(V¼ v)/
P(D¼ d) with weights given by a normal probability
density function whose value is negligible outside the
range l0 6 3r0. Within this small range, if the priors on
depicted depth V and actual depth D are weak, then the
ratio P(V¼v)/P(D¼d) is approximately constant, and we
use this approximation here. Letting this constant be k,

’ k/ x; d; r2
X þ r2

D

� �1
2

h i Z‘

�‘

/ v; l0;r0ð Þdv: ðA8Þ

Now the term inside the integral is a probability density
function, which integrates to one.

¼ k/ x; d; r2
X þ r2

D

� �1=2h i
: ðA9Þ

Thus, the maximum likelihood depth estimate is
approximately d̂¼ x, and the uncertainty associated
with this estimate is r2

X þ r2
D

� �1=2
. As explained in the

main text, in a single-cue depth-discrimination task, a
maximum likelihood observer simply uses the value of
the unbiased depth cue X to judge the depth of the
point of interest, and we can recover rX from the slope
of the observer’s psychometric function.

In a depth-discrimination task in which two depth
cues, X and Y, are available, the maximum likelihood
depth estimate depends on both cues. Here we assume
that X is unbiased but ambiguous in the manner
described by the model outlined here and that Y is
unbiased and unambiguous as in classic cue-combination
models. We also assume that X and Y are conditionally
independent given the true depth D. The maximum
likelihood depth estimate is the value of d that maximizes

PðX ¼ x;Y ¼ yjD ¼ dÞ ¼
PðX ¼ xjD ¼ dÞPðY ¼ yjD ¼ dÞ; ðA10Þ

¼ k/ d; x; r2
X þ r2

D

� �1=2h i
/ðd; y; r2

YÞ: ðA11Þ

Again, we use the fact that the point-wise product of
normal probability density functions is a scaled normal
probability density function.

¼ k/ x� y; 0; r2
X þ r2

D þ r2
Y

� �1=2h i
/ðd;l00;r00Þ;

ðA12Þ
where l00 ¼ rX

rXþrY xþ
rY

rXþrY y

and r00 ¼ rX þ rYð Þ�1=2

with rX ¼ r2
X þ r2

D

� ��1
and rY ¼ r�2Y .

Equation A12 is maximized when d¼ l 00, so the
maximum likelihood depth estimate is a weighted sum
of depth cues X and Y with weights determined by the
reliabilities rX and rY, much as in classic cue-combina-
tion models. However, here the ambiguous depth cue X
has reliability rX ¼ r2

X þ r2
D

� ��1
, and so the greater the

ambiguity term r2
D, the less reliable the cue, and the

lower the weight it receives in the optimal weighted sum
in Equation A12.

In classic cue-combination models, the ‘‘reliability’’ of
a depth cue Y can mean both the inverse of the cue’s
variance, rX ¼ r�2X , and the value rX used to construct
the cue’s weight rX/(rXþ rY) in an optimal weighted sum
of depth cues because these values are equal. In our
revised model, these values are not necessarily equal. In
this case, it may be more descriptive to refer to the
inverse variance r�2X as the cue’s ‘‘stability,’’ because it
describes the cue’s variability from trial to trial, and to
keep the term ‘‘reliability’’ for the uncertainty measure
r2
X þ r2

D

� ��1
that describes how precisely the depth cue

estimates true depth. Thus, for example, a noiseless but

ambiguous depth cue could be completely stable

(r�2X ¼ ‘) but only partly reliable r2
X þ r2

D

� ��1
, ‘

� �
.

We hope it is clear that this is a highly general model of
ambiguity in cue combination that should be useful for
understanding a wide range of tasks in addition to depth
discrimination from illusory contours.

We conclude with a minor clarification about our
model. As pointed out in the main text, Equation 3
implies that the image parameter v is not arbitrary in
that the images I(v) are parameterized by the mean
depth v that they depict at the point of interest. This is a
genuine restriction on the set of stimulus images because
in general there could be distinct images I1 and I2 that
depict distinct sets of partly camouflaged surfaces that
have the same mean depth v at the point of interest
whereas in a one-dimensional family of images I(v) there
can only be one image for each value of v. However, this
restriction is valid in many depth judgment tasks,
including the experiments we report here, in which the
stimulus images are a one-dimensional family I(v) of
stereoscopic Kanizsa squares, each of which can be
interpreted as depicting a range of partly camouflaged
surfaces with a unique mean depth v at the point midway
along a vertical illusory contour.
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