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Abstract 
ISO/IEC 29170-2 outlines a subjective procedure for assessing 
codec quality for near-threshold artifacts. Here we outline a 
statistical method for analyzing these data using Generalized 
Linear Mixed-Models (GLMMs). This procedure provides 
insightful metrics concerning the relative performance of two or 
more codecs that may aid in the perceptually-guided 
development and selection of novel codec technologies.  

Author Keywords 
subjective quality assessment; image compression; statistical 
modeling 

1. Objective and Background 
Objective image quality assessment metrics such as Peak Signal-
to-Noise ratio (PSNR) and S-CIELAB [1] are often used to 
quantify the reconstruction error of lossy codecs. While the results 
of such measures can be useful for codec evaluation, they do not 
necessarily or reliably predict human sensitivity to artifacts. In 
fact, subjective preference is sometimes non-intuitive, because 
distortion introduced during signal reconstruction may be aliased 
or attenuated by the sensory system. As humans are the likely end-
users of visual media, subjective image quality assessment 
methods which are sensitive to the nuances in human visual 
perception are essential. Hoffman and Stolitzka [2] presented a 
psychophysical method to assess the detectability of barely visible 
image artifacts; forming the basis of the ISO/IEC 29170-2 [3] 
standards document. The procedure involves temporally 
interleaving a source picture with its decompressed version, 
alternating at some fixed frequency, where any perceptually 
relevant distortions will appear to scintillate. Hoffman and 
Stolitzka claim this better reflects real-world media viewing, 
where frames compressed at different bitrates are temporally 
interleaved in-stream. The ISO/IEC 29170-2 document provides a 
reporting guideline with recommended descriptive statistics and 
graphs for analyzing and presenting results. This method was 
employed recently to conduct a large-scale evaluation of the 
VESA Display Stream Compression 1.2 [4]. While such an 
approach is useful for assessing the visibility of artifacts over a 
population of users. In other contexts, one of the major challenges 
using subjective measures like this is inter-observer variability. 
The ISO/IEC standard describes a means of determining whether 
a codec is ‘lossy’ for a given use case but provides no guidelines 
for comparing relative artifact detectability between codecs. In 
this paper we introduce a within subjects’ analysis approach to 
improve the precision and power of subjective codec comparisons. 
Applying statistical models to the data addresses this question, 
allowing one to test hypotheses and make statistical inferences. 
We report a logistic-regression procedure that applied the General 
Linear Mixed-Effects Model (GLMM) to subjective response data 

(obtained using the ISO/IEC standard), with intent to determine 
artifact detectability differences between two anonymous codecs.  

2. Methods 
We considered the task of comparing the relative performance of 
two codecs, designated A and B. Without loss of generality we 
assume codec B is a reference codec to which codec A compared. 
For each image, the following hypotheses regarding relative log-
likelihood differences were tested: 

 H0: Codec A has similar or lower detection rate relative 
to B (A - B ≤ 0) 

 H1: Codec A has a higher detection rate relative to B  
(A - B > 0) 

Note that here we are not assessing whether a codec is lossy or 
not, instead we ask if it performs poorly relative to the reference 
codec tested within the same experiment. Such a scenario may 
arise during codec development where one wishes to know if 
changes to an underlying algorithm made artifacts more 
conspicuous, or if one codec is interchangeable for another in a 
similar application. While the focus here is on codec comparison, 
the techniques described here can be used to model the effects of 
parameter settings such as bitrate on the expected visibility of 
image artifacts or make other quantitative predictions. 

2.1 Data: To illustrate the approach we used extant data 
collected from undergraduate students (N = 21) who met the 
observer selection criteria outlined in ISO/IEC 29170-2. Static 
reference images were presented alongside the temporally 
interleaved image; in a forced-choice paradigm, participants were 
tasked to indicate which of the pair appeared to be scintillating. 
Each image and codec combination were presented to each 
observer 30 times, resulting in a total of 360 trials per codec per 
subject. Each trial had an associated dichotomous response 
corresponding to whether the compressed image was detected or 
not. From pure chance one expects a correct answer on 50% of 
trials and if an artifact were highly visible we should see nearly 
100% correct responses. 

2.2 Analysis: The use of repeated-measures in the flicker 
paradigm resulted in non-independent clusters of observations 
grouped by participant. Due to individual differences in 
sensitivity to artifacts, subject-wise clusters have their own 
statistical moments that may vary between clusters, potentially 
leading to the logistic-regression model being dispersed; where 
the observed residual variance is not well predicted by the model. 
Here, we performed a logistic-regression using the Generalized 
Linear Mixed-Effects Model (GLMM). GLMMs are like a 
conventional Generalized Linear Models (GLMs); modeling the 
log-odds of some non-normal response given experimentally 
manipulated predictor variables (fixed-effects). However,  

P-31 / M. D. Cutone

1312 •  SID 2018 DIGEST ISSN 0097-996X/18/4703-1312-$1.00 © 2018 SID



 

G
u
[
p
p
d
g
p
c
G
b
r
w
p
m
g

3
F
I
c
s
o
s
f

3
f
(χ
d
c
r
e
p
w

s

GLMMs can a
uncontrolled corr
5]. In the prese

parameters that 
parameters, assu
distribution [6]
generalizations a
population rathe
conducted with 
GLMMs were fit
by the ’lme4’ pac
outines in the ’l

was modeled w
predictor variab
modeled. Within
groups in the ran

3. Results 
Figure 1 shows 
SO/IEC 29170

comparing codec
subject variabilit
of variation in re
statistical power 
for. 

3.1 Overall Ef
fitted GLMM m
χ2(11, N = 21)

differed on avera
challenging to 
egardless of co

effect of codec
probabilities bet
when collapsing

 Figure 1.  Plo
format specifie

estimated 
standard, the c

also incorporat
relation/variance
ent case, random

are used to 
uming they ar
. In practice,

as the parameter
er than just t
R (v3.4.2), a st
tted to the data u
ckage [7]. Pairw
smeans’ packag

with image and 
les (fixed effec

n-subject clusters
ndom effects term

plots in the rep
0-2 standard. T
cs directly as th
ty; however, it d
esponse across 
in comparing t

ffects: A Wald
model shows a s
) = 120.681, p 
age. This was ex
encode than 

odec. However, 
c (p = 0.681)
ween codec A 

g across all im

ots of descriptiv
ed in ISO/IEC 2
artifact detecti

codec is lossy f

te random eff
e inherent to a c
m effects mode
estimate comm

rise from the 
, these fixed-
rs better capture
the sample. Th
tatistical comput
using the ’glmer

wise comparisons
e [8]. A binary r

codec specifie
cts) whose inte
s were treated as
m. 

porting format p
The plot cann
he variability sh
does indicate th
subjects. This v
the codecs unles

d chi-squared te
significant main
< 0.001), wher

xpected as some
others, biasing
there was no 

), expressing a
and B were on

mages. There w

ve statistics for
29170-2. The s
on rate for that
for that image i

th

fects, which a
cluster of sampl
el within-observ

mon fixed effec
same populatio

-effects facilita
 the nature of th
he analysis w
ting environmen
r’ routine supplie
s were done usin
response (correc
ed as categoric
eraction was als
s non-independe

prescribed by th
not be used f
hown is the inte
e extensive rang

variability reduc
ss it is accounte

est applied to th
n effect of imag
re detection rat
e images are mo
g detection rat

significant ma
artifact detectio
n average simil
was a significa

r ‘Hinterground
square represe
t codec. The tri
f the upper ran
he standard de

are 
es 

ver 
cts 
on 
ate 
he 
as 
nt; 
ed 
ng 
ct) 
cal 
so 
nt 

he 
for 
er-
ge 
es 
ed 

he 
ge 
es 
re 
es 

ain 
on 
ar 

ant 

interact
43.067
image 
attribut
codecs 

Tab
code

where
artifa

(satisf

 

 

 

Musik’ (top) an
ents the mean o
iangles presen
nge falls somew
eviation of the d

 

tion effect betw
, p < 0.001), sh
which varies 

ted to certain im
used. 

ble 1. Table sh
ecs A and B. P
e codec A is m
acts. Whether t
fies H1: A – B >

Image

B

CircuarPatt

Clip

FemaleHo

Hinterground

Landsca

M

MosaicBroa

MysticMo

Pe

nd ‘Tools’ (botto
of averaged sc
t the range of t
where above th
data. 

ween image and
howing an asso

relative detec
mages being mor

howing log-odd
Positive β- and z
more likely than 

the difference i
> 0) at the 0.05

asterisk (*)

β 

arbara ‐.085 

tern26 ‐.021 

pboard .043 

orseFly ‐1.077 

dMusik .362 

ape102 ‐.381 

andrill ‐.585 

adcom ‐.093 

ountain ‐.311 

Noise .228 

eacock ‐.465 

Tools ‐1.123 

om) test image
cores which is i
the data; as pe
he 0.75 line. Th

d codec (χ2(11, 
ociation between
tion rates. Th
e challenging fo

s differences b
z-values indica
B to produce d

is statistically s
 level is indicat
). 

z-score p

‐.411 .65

‐.103 .54

.207 .41

‐4.424 1.00

1.750 .040

‐1.302 .90

‐2.684 .99

‐.432 .66

‐1.420 .92

.673 .25

‐2.201 .98

‐4.619 1.00

 
es in the report
interpreted as t
er the ISO/IEC 
he error bars sh

N = 21) = 
n codec and 
is may be 

or one of the 

between 
ate cases 
detectable 
significant 
ted with an 

59 

41 

18 

00 

0* 

04 

96 

67

22

50

86

00

ing 
the 

how 

P-31 / M. D. Cutone

SID 2018 DIGEST • 1313



 

3.2 Pairwise Comparisons: Multiple pairwise comparisons 
determined which cases had a significant difference in detection 
rates. Tests were parametrized to test the specific hypotheses 
mentioned previously; they were one-tailed (right) with a 
confidence level of 0.95. The resulting p-values were false 
detection rate corrected [9] to control for error inflation from 
multiple comparisons. A single significant difference between in 
codec A and B means was found for ’HintergroundMusik’ (p = 
0.0392), where the fitted parameter (β = 0.362, SE = 0.207) 
indicated that codec A was about 44% more likely to have 
detectable artifacts than B. Codec A was not significantly worse 
than codec B on any other image condition (see Table 1 for full 
results). 

4. Impact 
We have demonstrated a procedure to assess subjective 
differences in artifact detectability between codecs using 
GLMMs. It was shown that codec A had a significantly higher 
artifact detection rate than B for a single image in our set. In all 
other cases, codec A and B may be interchangeable for a given 
application. This statistical procedure can increase the utility of 
extant subjective quality assessment data, permitting one to make 
statistical inferences that can inform a codec’s development. 
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